Answer:
The magnitude of the centripetal acceleration increases by 16 times when the linear speed increases by 4 times.
Explanation:
The initial centripetal acceleration, a of the race-car around the circular track of radius , R with a linear speed v is a = v²/R.
When the linear speed of the race-car increases to v' = 4v, the centripetal acceleration a' becomes a' = v'²/R = (4v)²/R = 16v²/R.
So the centripetal acceleration, a' = 16v²/R.
To know how much the magnitude of the car's centripetal acceleration changes, we take the ratio a'/a = 16v²/R ÷ v²/R = 16
a'/a = 16
a' = 16a.
So the magnitude of the centripetal acceleration increases by 16 times when the linear speed increases by 4 times.
Answer:
mass
Explanation:
Mass (M) is the measure of the amount of matter in an object. Mass is measured in grams (g). Mass is measured on a balance by comparing the object against other objects with known masses.
We have that F=ma from the 2nd Newton law where F is the force, m is the mass and a is the acceleration. Suppose we have that F' is the new force and m' is the new mass. Then, we have that a'=F'/m' still, by rearranging Newton's law. We are given that F'=2F and m'=m/2. Hence,
![a'= \frac{2F}{ \frac{m}{2} } = \frac{4F}{m} = 4\frac{F}{m}](https://tex.z-dn.net/?f=a%27%3D%20%5Cfrac%7B2F%7D%7B%20%5Cfrac%7Bm%7D%7B2%7D%20%7D%20%3D%20%5Cfrac%7B4F%7D%7Bm%7D%20%3D%204%5Cfrac%7BF%7D%7Bm%7D%20)
But now, we have from F=ma, that a=F/m and we are given that a=1m/s^2.
We can substitute thus, a'=4a=4*1m/s^2=4m/s^2.
Answer:
they were in two places in flint and Birmingham and in Birmingham it is hot but flint of cold the Simi is they both have Sunday school for Joetta
Explanation:
use in your own words teachers know when your not trust me.