Hey There,
Question: "<span>A student gives a brief push to a block of dry ice. A moment later, the block moves across a very smooth surface at a constant speed. When drawing the free body diagram for the block of dry ice moving at a constant speed, the forces that should be included are: (select all that apply)"
Answer: C. Force Of Friction
B. Force
If This Helps May I Have Brainliest?</span>
Answer:
11.0 kg m/s
Explanation:
The impulse exerted on the cart is equal to its change in momentum:

where
m = 5.0 kg is the mass of the cart
is its change in speed
Substituting numbers into the equation, we find

First we have to find out the gravity on that planet. We use Newton second equation of motion. It is given as,
s = ut +(gt^2)/2
Distance s = 25m
Time t = 5 s
Velocity u = 0
By putting these values,
25 = 1/2.g.(5)²
g = 2
So the gravity on that planet is 2. Lets find out the weight of the astronaut.
Mass of the astronaut on earth m = 80 kg
Weight of astronaut on earth W = mg = (80)(9.8) = 784 N
Weight of astronaut on earth like planet = (80)(2) = 160 N
x = 160N
The component that’s dissolved is called the solvent
Velocity is a function of time and defined by both a magnitude and a direction. Often in physics problems, you will need to calculate the initial velocity (speed and direction) at which an object in question began to travel. There are multiple equations that can be used to determine initial velocity. Using the information given in a problem, you can determine the proper equation to use and easily answer your question. Sorry if this is not what your looking for