120 minutes=2 hours
20/2= 10mph
Answer:
As a mass greater than that of baseball, at the moment of the bowling wave the moment of the baseball ball is also greater
Explanation:
This problem is an application of momentum and momentum. When the astronaut pushed balls, he needed more force to move the ball of greater mass (bowling). The expression for soul is
p = m v
Besibol Blade
p1 = m1 v
Bowling ball
p2 = m2 v
As a mass greater than that of baseball, at the moment of the bowling wave the moment of the baseball ball is also greater
p2 >> p1
Answer:
1.125m/s^2
Explanation:
Since acceleration is defined as the rate of change in velocity with respect to time. Mathematically
v^2= u^2+2as
Where a,v,u and s are the acceleration, final velocity, initial velocity and distance respectively.
a = ?
u = 0m/s
v = 15m/s
s = 100m
Substituting the values into the formula above
v^2= u^2+2as
15^2=0^2+2×a×100
225= 0+200a
225= 200a
Divide both sides by 200
225/200 = 200a/200
a= 1.125m/s^2
Hence the acceleration of the car is 1.125m/s^2.
Note that the car accelerated uniformly from rest, that was why the initial velocity was 0m/s
The magnetic north pole of the earth's magnet is in the geographic south pole.
- There are two magnetic and geographic poles each, north and south
- The two geographic poles are the locations where the earth's axis of rotation passes through which is imaginary
- The magnetic north and south poles are not the same as the geographic north and south poles
- In a compass, the needle points to the magnetic north pole
- By convention, the magnetic north pole corresponds to the geographic south pole
- The magnetic south pole corresponds to the geographic north pole
- The magnetic field lines of a magnet start from the magnetic north pole and end at the magnetic south pole
The magnetic north pole of the earth's magnet is the geographic south pole.
Learn more about earth's magnetism here:
brainly.com/question/3928159
#SPJ10
Answer:
The speed of the shell at launch and 5.4 s after the launch is 13.38 m/s it is moving towards the Earth.
Explanation:
Let u is the initial speed of the launch. Using first equation of motion as :

a=-g

The velocity of the shell at launch and 5.4 s after the launch is given by :

So, the speed of the shell at launch and 5.4 s after the launch is 13.38 m/s it is moving towards the Earth.