Answer:
12N
Explanation:
We are given that one of the forces are acting only in the horizontal x-direction. As a force must be applied on an object of mass in order to cause acceleration, the 6.0ms^-2 acceleration is due to the non-horizontal force acting on the 2.0kg object.
Using Newton's Second Law of motion; we know that for a constant mass, force is equal to mass times acceleration, F=ma.
Assuming the other force is acting only in the vertical direction (question doesn't specify, thus we are finding the minimum force to cause this acceleration):
F= 2.0kg * 6.0ms^-2
F=12.0 kgms^-2
F=12 N
A small rock quickly rolling down a hill because as the velocity or speed increases the particles in the rock start to increase kinetic energy. The particles start to act up and create more energy. Also because the small rock would go faster than a giant rock because of Newton's second law. Can I have brainliest pls?
Objects want to continue doing what they’re doing because they are “lazy.” This is called law of inertia.
Newton's first law of motion states that an object at rest or uniform motion in a straight line will continue in that state unless it is being acted upon by an external force. This law is also called the law of inertia because it depends on mass.
<em>From the given question, we can </em><em>fill gaps </em><em>as follows;</em>
Objects want to continue doing what they’re doing because they are “lazy.” This is called law of inertia.
Learn more about Newton's first law of motion here: brainly.com/question/10454047
Answer: according to the Avagadro's law, volume is directly propotional to no of moles: VXn
according to the Charles law, volume is directly propotional to temperatue: VXT
according to the Boyle's law, volume is inversely propotional to P: VX1/P
when we combine them we get:
VXnT1/P
V=knT/P
k= R(universal gas constant)
V=RnT/P
PV=nRT
Answer:
The time constant is
Explanation:
From the question we are told that
The spring constant is 
The mass of the ball is 
The amplitude of the oscillation t the beginning is 
The amplitude after time t is 
The number of oscillation is 
Generally the time taken to attain the second amplitude is mathematically represented as
Here T is the period of oscillation

=> 
=> 
Generally the amplitude at time t is mathematically represented as

Here a is the damping constant so
at
, 
So

=> 
taking natural log of both sides
=>
=> 
Generally the time constant is mathematically represented as
=>
=>