1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
g100num [7]
3 years ago
13

How do atoms become ions explain which characteristics change in which stay the same during this transformation

Physics
1 answer:
Scilla [17]3 years ago
7 0
Ions are charged atoms
You might be interested in
Plain electromagnetic wave (in air) has a frequency of 1 MHz and its B-field amplitude is 9 nT a. What is the wavelength in air?
Norma-Jean [14]

Answer:

Part a)

\lambda = 300 m

Part b)

E = 2.7 N/C

Part c)

I = 9.68 \times 10^{-3} W/m^2

P = 3.22 \times 10^{-11} N/m^2

Explanation:

Part a)

As we know that frequency = 1 MHz

speed of electromagnetic wave is same as speed of light

So the wavelength is given as

\lambda = \frac{c}{f}

\lambda = \frac{3\times 10^8}{1\times 10^6}

\lambda = 300 m

Part b)

As we know the relation between electric field and magnetic field

E = Bc

E = (9 \times 10^{-9})(3\times 10^8)

E = 2.7 N/C

Part c)

Intensity of wave is given as

I = \frac{1}{2}\epsilon_0E^2c

I = \frac{1}{2}(8.85 \times 10^{-12})(2.7)^2(3\times 10^8)

I = 9.68 \times 10^{-3} W/m^2

Pressure is defined as ratio of intensity and speed

P = \frac{I}{c} = \frac{9.68\times 10^{-3}}{3\times 10^8}

P = 3.22 \times 10^{-11} N/m^2

6 0
3 years ago
A graduated cylinder contains 17.5 ml of water. When a metal cube is placed onto the cylinder, its water level rises to 20.3 ml.
igomit [66]

Answer:

V=2.8 ml

Explanation:

volume of the cube is it would be 20.3 - 17.5 ml so 2.8 ml.

8 0
3 years ago
Mass can be considered concentrated at the center of mass for rotational motion.Select one:TrueFalse
frez [133]

iIn this case the mass of a body cannot be considered to be concentrated at the centre of mass of the body for the purpose of computing the rotational motion

Therefore the answer is False

6 0
1 year ago
In a historical movie, two knights on horseback start from rest 86 m apart and ride directly toward each other to do battle. Sir
Harlamova29_29 [7]

Answer:

Relative to Sir George's starting point, the knights collide at a distance of 38.43 m from Sir George's starting point.

Explanation:

Let the distance covered by Sir George be S_{1}

and the distance covered by Sir Alfred be S_{2}

Since the knights collide, hence they must have traveled for the same amount of time just before collision

From one of the equations of motion for linear motion

S = ut + \frac{1}{2}at^{2}

Where S is the distance traveled

u is the initial velocity

a is the acceleration

and t is the time

For Sir George,

S = S_{1}

u = 0 m/s (Since they start from rest)

a =0.21 m/s²

Hence,

S = ut + \frac{1}{2}at^{2} becomes

S_{1}  = (0)t + \frac{1}{2}(0.21)t^{2}\\S_{1}  = 0.105 t^{2}\\

t^{2} = \frac{S_{1}}{0.105}

Now, for Sir Alfred

S = S_{2}

u = 0 m/s (Since they start from rest)

a =0.26 m/s²

Hence,

S = ut + \frac{1}{2}at^{2} becomes

S_{2}  = (0)t + \frac{1}{2}(0.26)t^{2}\\S_{2}  = 0.13 t^{2}\\

t^{2} = \frac{S_{2}}{0.13}

Since, they traveled for the same time, t just before collision, we can write

\frac{S_{1}}{0.105}= \frac{S_{2}}{0.13}

Since, the two nights are 86 m apart, that is, the sum of the distances covered by the knights just before collision is 86 m. Then we can write that

S_{1} + S_{2} = 86 m

Then, S_{2} = 86 - S_{1}

Then,

\frac{S_{1}}{0.105}= \frac{S_{2}}{0.13} becomes

\frac{S_{1}}{0.105}= \frac{86 -S_{1}}{0.13}

0.13{S_{1}}= 0.105({86 -S_{1}})\\0.13{S_{1}}= 9.03 - 0.105S_{1}}\\0.13{S_{1}} + 0.105S_{1}}= 9.03 \\0.235{S_{1}} = 9.03\\{S_{1}} =\frac{9.03}{0.235}

S_{1} = 38.43 m

∴ Sir George covered a distance of 38.43 m just before collision.

Hence, relative to Sir George's starting point, the knights collide at a distance of 38.43 m from Sir George's starting point.

6 0
3 years ago
A large bottle contains 150 L of water, and is open to the atmosphere. If the bottle has a flat bottom with an area of 2 ft, cal
Yuri [45]

Answer:

Total pressure exerted at bottom =  119785.71 N/m^2

Explanation:

given data:

volume of water in bottle = 150 L = 0.35 m^3

Area of bottle = 2 ft^2

density of water = 1000 kg/m

Absolute pressure on bottom of bottle will be sum of atmospheric pressure and pressure due to water

Pressure due to water P = F/A

F, force exerted by water = mg

m, mass of water = density * volume

                             =  1000*0.350 = 350 kg

F  = 350*9.8 = 3430 N

A = 2 ft^2 = 0.1858 m^2  

so, pressure P = 3430/ 0.1858 = 18460.71 N/m^2

Atmospheric pressure

At sea level atmospheric pressure is 101325 Pa

Total pressure exerted at bottom  = 18460.71 + 101325 = 119785.71 N/m^2

Total pressure exerted at bottom =  119785.71 N/m^2

6 0
3 years ago
Other questions:
  • At which points would the river be traveling the slowest?
    8·1 answer
  • Suppose you analyze standardized test results for a country and discover almost identical distributions of physics scores for fe
    6·1 answer
  • When an object is turning around, is it also at rest at the point?
    5·2 answers
  • The compound limestone (which is mined in Crossville) is chemically
    15·1 answer
  • The magnetic field strength at the north pole of a 2.0-cmcm-diameter, 8-cmcm-long Alnico magnet is 0.10 TT. To produce the same
    6·1 answer
  • How long has a victim been dead if his body temperature was 89.2°F?
    9·2 answers
  • How do electromagnetic waves travel through a vacuum?​
    5·1 answer
  • To calculate the gravitational potential energy of a statue on a 10-meters-tall platform, you would have to know the statue's __
    10·1 answer
  • Que distancia se desplaza un objeto que se mueve con velocidad de 72km/h durante 10 min?
    15·1 answer
  • What are various paradox related to time travel?​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!