Answer:
1. 2NaN₃(s) → 2Na(s) + 3N₂(g)
2. 14.5 g NaN₃
Explanation:
The answer is incomplete, as it is missing the required values to solve the problem. An internet search shows me these values for this question. Keep in mind that if your values are different your result will be different as well, but the solving methodology won't change.
" The airbags that protect people in car crashes are inflated by the extremely rapid decomposition of sodium azide, which produces large volumes of nitrogen gas. 1. Write a balanced chemical equation, including physical state symbols, for the decomposition of solid sodium azide (NaN₃) into solid sodium and gaseous dinitrogen. 2. Suppose 71.0 L of dinitrogen gas are produced by this reaction, at a temperature of 16.0 °C and pressure of exactly 1 atm. Calculate the mass of sodium azide that must have reacted. Round your answer to 3 significant digits. "
1. The <u>reaction that takes place is</u>:
- 2NaN₃(s) → 2Na(s) + 3N₂(g)
2. We use PV=nRT to <u>calculate the moles of N₂ that were produced</u>.
P = 1 atm
V = 71.0 L
n = ?
T = 16.0 °C ⇒ 16.0 + 273.16 = 289.16 K
- 1 atm * 71.0 L = n * 0.082 atm·L·mol⁻¹·K⁻¹ * 289.16 K
Now we <u>convert N₂ moles to NaN₃ moles</u>:
- 0.334 mol N₂ *
= 0.223 mol NaN₃
Finally we <u>convert NaN₃ moles to grams</u>, using its molar mass:
- 0.223 mol NaN₃ * 65 g/mol = 14.5 g NaN₃
Answer:
hiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Explanation:
Answer:
The concentrations are :
![[HAsc^-]=0.000702 M](https://tex.z-dn.net/?f=%5BHAsc%5E-%5D%3D0.000702%20M)
![[Asc^{2-}]=5.92\times 10^{-8} M](https://tex.z-dn.net/?f=%5BAsc%5E%7B2-%7D%5D%3D5.92%5Ctimes%2010%5E%7B-8%7D%20M)
The pH of the solution is 3.15.
Explanation:

Initial
c 0 0
Equilibrium
c-x x x
![K_{a1}=\frac{[HAs^-][H^+]}{[H_2Asc]}](https://tex.z-dn.net/?f=K_%7Ba1%7D%3D%5Cfrac%7B%5BHAs%5E-%5D%5BH%5E%2B%5D%7D%7B%5BH_2Asc%5D%7D)


Solving for x:
x = 0.000702 M
![[HAsc^-]=0.000702 M](https://tex.z-dn.net/?f=%5BHAsc%5E-%5D%3D0.000702%20M)

Initially
x 0 0
At equilibrium ;
(x - y) y y
![K_{a2}=\frac{[As^{2-}][H^+]}{[HAsc^-]}](https://tex.z-dn.net/?f=K_%7Ba2%7D%3D%5Cfrac%7B%5BAs%5E%7B2-%7D%5D%5BH%5E%2B%5D%7D%7B%5BHAsc%5E-%5D%7D)


Putting value of x = 0.000702 M


![[Asc^{2-}]=5.92\times 10^{-8} M](https://tex.z-dn.net/?f=%5BAsc%5E%7B2-%7D%5D%3D5.92%5Ctimes%2010%5E%7B-8%7D%20M)
Total concentration of ![[H^+]=x+y=0.000702 M+5.92\times 10^{-8} M=7.0206\times 10^{-4} M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dx%2By%3D0.000702%20M%2B5.92%5Ctimes%2010%5E%7B-8%7D%20M%3D7.0206%5Ctimes%2010%5E%7B-4%7D%20M)
The pH of the solution :
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)

Answer:
Sodium Hydroxide + Sulfuric Acid = Sodium Sulfate + Water
2NaOH + H2SO4 → Na2SO4 + 2H2O
Explanation:
To balance a chemical equation, enter an equation of a chemical reaction and press the Balance button. The balanced equation will appear above.
Use uppercase for the first character in the element and lowercase for the second character. Examples: Fe, Au, Co, Br, C, O, N, F.
Ionic charges are not yet supported and will be ignored.
Replace immutable groups in compounds to avoid ambiguity. For example, C6H5C2H5 + O2 = C6H5OH + CO2 + H2O will not be balanced, but XC2H5 + O2 = XOH + CO2 + H2O will.
Compound states [like (s) (aq) or (g)] are not required.
You can use parenthesis () or brackets [].
Answer:
B
Explanation:
Cause metamorphic rock is formed by heat pressure overtime