Answer:
(a) How many are there to select 2 pairs of gloves?
10 ways
(b) How many ways are there to select 4 gloves out of the 10 such that 2 of the 4 make a pair. (a pair consists of any right glove and left glove.)
130 ways
Step-by-step explanation:
We solve the above questions using Combination
Combination = C(n, r) = nCr
= n!/n! ×(n - r)!
(a) How many are there to select 2 pairs of gloves?
We have 5 pairs of gloves. Therefore, the number of ways to select 2 gloves =5C2
= 5!/2! × (5 - 2)!
= 5!/2! × 3!
= 5 × 4 × 3 × 2 × 1/(2 × 1) × (3 × 2 × 1)!
= 10 ways.
(b) How many ways are there to select 4 gloves out of the 10 such that 2 of the 4 make a pair. (a pair consists of any right glove and left glove.)
We are told to select 4 gloves out of the 10 gloves = 10C4
We have 5 pairs, we need to make sure that two out of the selected 4 make a pair = 5 × 2⁴
= 80
Hence,
10C4 - 5C4
= [10!/4! × (10 - 4)!] - 80
= 210 - 80
= 130 ways
Answer:
no because the x value -2 has two corasponding y values
Step-by-step explanation:
0Answer:
A
Step-by-step explanation:
Find the zeros by letting y = 0 , that is
x² - x - 6 = 0 ← in standard form
(x - 3)(x + 2) = 0 ← in factored form
Equate each factor to zero and solve for x
x - 3 = 0 ⇒ x = 3
x + 2 = 0 ⇒ x = - 2
Since the coefficient of the x² term (a) > 0
Then the graph opens upwards and will be positive to the left of x = - 2 and to the right of x = 3 , that is in the intervals
(-∞, - 2) and (3, ∞ ) → option A
Answer:
You can't factor that any further.
Step-by-step explanation: