Answer:
It will have more speed/more acceleration than or the ground.
Explanation:
It will lean twords the side that moves and for ex if the wagon has a level to pull a gap down the ball will go forward
The equation relating velocity and wavelength is written below:
v = λf
where λ is the wavelength in m while f is frequency in 1/s.
Let's determine first the frequency from the speed of light:
c = distance/time, where c is the speed of light equal to 3×10⁸ m/s
3×10⁸ m/s = (300 mm)(1 m/1000 mm)/ time
time = 1×10⁻⁹ seconds
Since f = 1/t,
f = 1/1×10⁻⁹ seconds = 10⁹ s⁻¹
Thus,
v = (795×10⁻⁹ m)(10⁹ s⁻¹)
v = 795 m/s
The question is incomplete, the complete question is;
Choose the aqueous solution that has the highest boiling point. These are all solutions of nonvolatile solutes and you should assume ideal van't Hoff factors where applicable. 0.100 m C6H12O6 0.100 m AlCl3 0.100 m NaCl 0.100 m MgCl2 They all have the same boiling point.
Answer:
AlCl3 0.100 m
Explanation:
Let us remember that the boiling point elevation is given by;
ΔTb = Kb m i
Where;
ΔTb = boiling point elevation
Kb = boiling point constant
m = molality of the solution
i = Van't Hoff factor
We can see from the question that all the solutions possess the same molality, ΔTb now depends on the value of the Van't Hoff factor which in turn depends on the number of particles in solution.
AlCl3 yields four particles in solution, hence ΔTb is highest for AlCl3 . The solution having the highest value of ΔTb also has the highest boiling point.