Answer:
The value of dissociation constant of the monoprotic acid is
.
Explanation:
The pH of the solution = 2.46
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
![2.46=-\log[H^+]](https://tex.z-dn.net/?f=2.46%3D-%5Clog%5BH%5E%2B%5D)
![[H^+]=0.003467 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.003467%20M)

Initially
0.0144 0 0
At equilibrium
(0.0144-x) x x
The expression if an dissociation constant is given by :
![K_a=\frac{[A^-][H^+]}{[HA]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BA%5E-%5D%5BH%5E%2B%5D%7D%7B%5BHA%5D%7D)

![x=[H^+]=0.003467 M](https://tex.z-dn.net/?f=x%3D%5BH%5E%2B%5D%3D0.003467%20M)


The value of dissociation constant of the monoprotic acid is
.
Answer: b} The exact time when an individual atom will decay can be accurately predicted.
c} After each half-life, the amount of radioactive material is reduced by half.
Explanation:
All radioactive decay follows first order kinetics.
Rate law expression for first order kinetics is given by:
where,
k = rate constant
t = time taken for decay process
a = initial amount of the reactant
a - x = amount left after decay process
Expression for calculating half life, which is the time taken by the half of the reactants to decompose is:

Answer:
Explanation:
Depending upon the relative arrangements of XandY X a n d Y , the square planar molecule AX3Y A X 3 Y shows only the following structure: Hence, only one structure is possible for a square planar molecule with a formula of AX3Y A X 3 Y .
Answer: The density of the material is 2.66 g/mL and it is likely this is made of Aluminum
Explanation:
The first step to know the material of the chunk of metal is to calculate its density. The general formula for density is P (density) =
. Moreover, in this case, it is known the mass is 37.28 g, but the volume is not directly provided. However, we know the water in the graduated cylinder had a volume of 20.0 mL and this increased to 34.0 mL when the chunk of metal is added, this means the volume of the metal is 14 mL (34.0 mL - 20.0 mL = 14 mL). Now let's calculate the density:

This means the density of this metal is 2.66 g/mL, which can be rounded as 2. 7 g/mL, and according to the chart, this is the density of aluminum. Therefore, this material of this chunk is aluminum.