The conclusion that would support the students prediction is B) Plant "A" grows taller than Plant "B".
If the student thinks that adding fertilizer to the plant would help it grow then answer B) would make the most sence.
1.01 x 10^24 molecules.
Explanation:
To calculate the number of molecules in a given number of mole, we can simply multiply by Avogadro's number which is equal to 6.022 x 10 ^23.
Therefore,
10 molecules = 1.68 mol x (6.022 x 10^23 molecules) / (1 mol = 1.01 x 10^24) molecules.
I hope this helps :)
You add solute until it can't dissolve anymore.
Answer:
The answer to your question is Pressure = 5 atm
Explanation:
Data
Volume 1 = V1 = 0.5 l
Pressure 1 = P1 = 1 atm
Volume 2 = V2 = 0.1 l
Pressure 2 = P2 = x
Formula
To solve this problem use the Boyle's equation
V1P1 = V2P2
Solve for P2
P2 = V1P1/V2
Substitution
P2 = (0.5 x 1) / 0.1
Simplification
P2 = 0.5/0.1
Result
P2 = 5 atm
Answer : The equilibrium concentration of
at
is,
.
Solution : Given,
Equilibrium constant, 
Initial concentration of
= 0.260 m
Let, the 'x' mol/L of
are formed and at same time 'x' mol/L of
are also formed.
The equilibrium reaction is,

Initially 0.260 m 0 0
At equilibrium (0.260 - x) x x
The expression for equilibrium constant for a given reaction is,
![K_c=\frac{[H_3O^+][C_2H_3O_2^-]}{[HC_2H_3O_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BC_2H_3O_2%5E-%5D%7D%7B%5BHC_2H_3O_2%5D%7D)
Now put all the given values in this expression, we get

By rearranging the terms, we get the value of 'x'.

Therefore, the equilibrium concentration of
at
is,
.