Answer:
work done is -150 kJ
Explanation:
given data
volume v1 = 2 m³
pressure p1 = 100 kPa
pressure p2 = 200 kPa
internal energy = 10 kJ
heat is transferred = 150 kJ
solution
we know from 1st law of thermodynamic is
Q = du +W ............1
put here value and we get
-140 = 10 + W
W = -150 kJ
as here work done is -ve so we can say work is being done on system
Answer: 117 kPa
Explanation:
For the liquid at depth 3 m, the gauge pressure is equal to = P₁=39 kPa
For the liquid at depth 9m, the gauge pressure is equal to= P₂
Now we are given the condition that the liquid is same. That must imply that the density must be same throughout the depth.
So, For finding gauge pressure we have formula P= ρ * g * h
Also gravity also remains same for both liquids
So taking ratio of their respective pressures we have
= 
So
= 
Or P₂= 39 * 3 = 117 kPa
Answer:
A. A login vty mode subcommand
Explanation:
since we are protecting co-workers from connecting to the switches from their desktop PCs, we would need a Telnet line which is used to connect to devices remotely from other network devices on the same network segment as the device we want to connect to. A login local vty subcommand configures a local username for login access but since our design constraint is to configure without usernames, option A is the correct answer.
Answer:
gravity
Explanation:
as the earth rotates on an axis, it causes an effect known as centripetal acceleration with is an acceleration that pulls objects towards the center of the object. in planets, we call this Gravity
#16
If we put a resistor in circuit it will slow the speed of current
Let's check ohms law

- So if resistance is more current is less
#17
Again use ohms law


- Voltage must be increased