Answer:
Part a)

Part b)

Explanation:
Part a)
Since the diver is moving under gravity
so here its acceleration due to gravity will be uniform throughout the motion
so here we will have

here we have




Part b)
at highest point of his motion the final speed will be zero
so we will have



Answer:
122.735 behind converging lens ; 2.16
Explanation:
Given tgat:
Object distance, u = 29 cm
Image distance, v =
Focal length, f = - 19 (diverging lens)
Mirror formula :
1/u + 1/v = 1/f
1/29 + 1/v = - 1/19
1/v = - 1/19 - 1/29
1/v = −0.087114
v = −11.47916
v = -11.48
Second lens
Object distance :
u = 11.48 + 11 = 22.48 cm
1/v = 1/19 - 1/22.48
1/v = 0.0081475
v = 1 / 0.0081475
v = 122.735 cm
122.735 behind second lens
Magnification, m
m = m1 * m2
m = - v / u
Lens1 :
m1 = -11.48 / 29 = - 0.3958620
m2 = - 122.735 / 22.48 = - 5.4597419
Hence,
- 0.3958620 * - 5.4597419 = 2.16
Having the ability to deal with people in a way that does not offend them
The answer is B. I hope this helps! :)
17 Sin (45) in the vertical and 17 Cos
(45)