Answer:280.216j/kg°C
Explanation:
Mass of metal=0.0663kg
mass of water=0.395kg
Final temperature=27.4°C
Temperature of metal=241°C
Temperature of water=25°C
specific heat capacity of water=4186j/kg°C
0.0663xax(241-27.4)=0.395x4186x(27.4-25)
0.0663xax213.6=0.395x4186x2.4
14.16168a=3968.328
a=3968.328 ➗ 14.16168
a=280.216j/kg°C
Work Done = Force x distance
Since she exerted a horizontal force of 20N over a distance of 5m, the work done is 20N x 5m which is equals to 100 joules
Answer:

Explanation:
Given that,
The compression in the spring, x = 0.0647 m
Speed of the object, v = 2.08 m/s
To find,
Angular frequency of the object.
Solution,
We know that the elation between the amplitude and the angular frequency in SHM is given by :

A is the amplitude
In case of spring the compression in the spring is equal to its amplitude



So, the angular frequency of the spring is 32.14 rad/s.
For a photographer that wishes to determine the color of light that he can use in a dark room that will not expose the films he is processing, having used a Blue Incandescent bulb, he should proceed to use a Red Incandescent bulb for the next trial.
The photographer in question is performing an experiment. For these kinds of experiments it is important to identify the variables present, which can be of three kinds:
- Control variables
- Dependent variables
- Independent variables
For this experiment, the dependent variable is the exposure of the light onto the films, given that this is what we wish to measure. The independent variable will be the color of the light being used which is what will affect the dependent variable.
The remaining variable must be the control variable. Unlike the previous variables, we can have more than one of these. The control variable is there to make sure that only the dependent variable is affecting the outcome. We do this by keeping the control variable the same through each trial, which is why the photographer should not change the type of bulb in the second experiment, changing only the color of the light.
To learn more visit:
brainly.com/question/1549017?referrer=searchResults
A. Angular momentum is always conserved would be the correct answer.
This is because like linear momentum (mvmv), angular momentum (r×mvr×mv) is a conserved quantity, where rr is the vector from the center of rotation. For a skater holding a static pose, for each particle making up her body, the contribution in magnitude to the total angular momentum is given by mirivimirivi. Thus bringing in her arms reduces riri for those particles. In order to conserve angular momentum, there is then an increase in the angular velocity.
hope this helps!