Mercury,Venus,Earth and Mars
Answer:
Explanation:
If friction is neglected, the wheel cannot roll and can only slide frictionlessly and will have the same velocity at the bottom of the ramp as if it had been in free fall as it has converted the same amount of potential energy.
mgh = ½mv²
v = √(2gh) = √(2(9.81)(2.00)) = 6.26418... = 6.26 m/s
However if we do not ignore all friction and the wheel rolls without slipping down the slope, the potential energy becomes linear and rotational kinetic energy
mgh = ½mv² + ½Iω²
mgh = ½mv² + ½(½mR²)(v/R)²
2gh = v² + ½v²
2gh = 3v²/2
v = √(4gh/3) =√(4(9.81)(2.00)/3) = 5.11468... = 5.11 m/s
On foot= 1 kilometer per 5 minutes
Bike= I kilometer per 2 minutes
3 minutes fast per mile on bike
Answer:
I can't get a clear explanation of the question
Answer:
Distance, d = 61.13 ft
Explanation:
It is given that,
Initial speed of the car, u = 50 mi/h = 73.34 ft/s
Finally, it stops i.e. v = 0
Deceleration of the car, 
We need to find the distance covered before the car comes to a stop. Let the distance is s. It can be calculated using third law of motion as :



s = 61.13 ft
So, the distance covered by the car before it comes to rest is 61.13 ft. Hence, this is the required solution.