Answer:
The speed of the block is 8.2 m/s
Explanation:
Given;
mass of block, m = 2.1 kg
height above the top of the spring, h = 5.5 m
First, we determine the spring constant based on the principle of conservation of potential energy
¹/₂Kx² = mg(h +x)
¹/₂K(0.25)² = 2.1 x 9.8(5.5 +0.25)
0.03125K = 118.335
K = 118.335 / 0.03125
K = 3786.72 N/m
Total energy stored in the block at rest is only potential energy given as:
E = U = mgh
U = 2.1 x 9.8 x 5.5 = 113.19 J
Work done in compressing the spring to 15.0 cm:
W = ¹/₂Kx² = ¹/₂ (3786.72)(0.15)² = 42.6 J
This is equal to elastic potential energy stored in the spring,
Then, kinetic energy of the spring is given as:
K.E = E - W
K.E = 113.19 J - 42.6 J
K.E = 70.59 J
To determine the speed of the block due to this energy:
KE = ¹/₂mv²
70.59 = ¹/₂ x 2.1 x v²
70.59 = 1.05v²
v² = 70.59 / 1.05
v² = 67.229
v = √67.229
v = 8.2 m/s
Evolution of sexual production
Answer:
I don't know about this, this is which class question
I think the key here is to be exquisitely careful at all times, and
any time we make any move, keep our units with it.
We're given two angular speeds, and we need to solve for a time.
Outer (slower) planet:
Angular speed = ω rad/sec
Time per unit angle = (1/ω) sec/rad
Angle per revolution = 2π rad
Time per revolution = (1/ω sec/rad) · (2π rad) = 2π/ω seconds .
Inner (faster) planet:
Angular speed = 2ω rad/sec
Time per unit angle = (1/2ω) sec/rad
Angle per revolution = 2π rad
Time per revolution = (1/2ω sec/rad) · (2π rad) = 2π/2ω sec = π/ω seconds.
So far so good. We have the outer planet taking 2π/ω seconds for one
complete revolution, and the inner planet doing it in only π/ω seconds ...
half the time for double the angular speed. Perfect !
At this point, I know what I'm thinking, but it's hard to explain.
I'm pretty sure that the planets are in line on the same side whenever the
total elapsed time is something like a common multiple of their periods.
What I mean is:
They're in line, SOMEwhere on the circles, when
(a fraction of one orbit) = (the same fraction of the other orbit)
AND
the total elapsed time is a common multiple of their periods.
Wait ! Ignore all of that. I'm doing a good job of confusing myself, and
probably you too. It may be simpler than that. (I hope so.) Throw away
those last few paragraphs.
The planets are in line again as soon as the faster one has 'lapped'
the slower one ... gone around one more time.
So, however many of the longer period have passed, ONE MORE
of the shorter period have passed. We're just looking for the Least
Common Multiple of the two periods.
K (2π/ω seconds) = (K+1) (π/ω seconds)
2Kπ/ω = Kπ/ω + π/ω
Subtract Kπ/ω : Kπ/ω = π/ω
Multiply by ω/π : K = 1
(Now I have a feeling that I have just finished re-inventing the wheel.)
And there we have it:
In the time it takes the slower planet to revolve once,
the faster planet revolves twice, and catches up with it.
It will be 2π/ω seconds before the planets line up again.
When they do, they are again in the same position as shown
in the drawing.
To describe it another way . . .
When Kanye has completed its first revolution ...
Bieber has made it halfway around.
Bieber is crawling the rest of the way to the starting point while ...
Kanye is doing another complete revolution.
Kanye laps Bieber just as they both reach the starting point ...
Bieber for the first time, Kanye for the second time.
You're welcome. The generous bounty of 5 points is very gracious,
and is appreciated. The warm cloudy water and green breadcrust
are also delicious.