Answer:
Domain: -5, -3, -2, 1, 3
Step-by-step explanation:
Find all the points on the x-axis that line up with the line shown on the graph.
Answer: it’s x^3+3x^2+7x+17+3/x-3
Sorry ab the handwriting lol
Step-by-step explanation:
The given expression is
.
We need to simplify the given expression.
<h3>What is a rational number?</h3>
In mathematics, a rational number is a number that can be expressed as the quotient or fraction p/q of two integers, a numerator p and a non-zero denominator q.
Now group the rational numbers 



Therefore, the simplified value of the given expression is
.
To learn more about the rational numbers visit:
brainly.com/question/17450097.
#SPJ1
Answer:
Step-by-step explanation:
a). Stock price arranged as arithmetic sequence will be,
5, 8, 11, 14
b). Since, explicit formula of an arithmetic sequence is given by,

Here,
= nth term of the sequence
a = first term
n = number of term
d = common difference
From the table attached,
First term of the sequence 'a' = 5
Common difference 'd' = 8 - 5 = 3
Therefore, explicit formula for the given sequence will be,


c). Slope intercept form of the equation will be,
y = 3x + 2
d). Input out values for the graph of the given equation,
x 0 1 2 3
y 2 5 8 11
By using this data we can graph the line.
Check the picture below.
![~\hfill \stackrel{\textit{\large distance between 2 points}}{d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2}}~\hfill~ \\\\[-0.35em] ~\dotfill\\\\ A(\stackrel{x_1}{1}~,~\stackrel{y_1}{-9})\qquad B(\stackrel{x_2}{8}~,~\stackrel{y_2}{0}) ~\hfill AB=\sqrt{[ 8- 1]^2 + [ 0- (-9)]^2} \\\\\\ AB=\sqrt{7^2+(0+9)^2}\implies AB=\sqrt{7^2+9^2}\implies \boxed{AB=\sqrt{130}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=~%5Chfill%20%5Cstackrel%7B%5Ctextit%7B%5Clarge%20distance%20between%202%20points%7D%7D%7Bd%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%7D~%5Chfill~%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20A%28%5Cstackrel%7Bx_1%7D%7B1%7D~%2C~%5Cstackrel%7By_1%7D%7B-9%7D%29%5Cqquad%20B%28%5Cstackrel%7Bx_2%7D%7B8%7D~%2C~%5Cstackrel%7By_2%7D%7B0%7D%29%20~%5Chfill%20AB%3D%5Csqrt%7B%5B%208-%201%5D%5E2%20%2B%20%5B%200-%20%28-9%29%5D%5E2%7D%20%5C%5C%5C%5C%5C%5C%20AB%3D%5Csqrt%7B7%5E2%2B%280%2B9%29%5E2%7D%5Cimplies%20AB%3D%5Csqrt%7B7%5E2%2B9%5E2%7D%5Cimplies%20%5Cboxed%7BAB%3D%5Csqrt%7B130%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![B(\stackrel{x_1}{8}~,~\stackrel{y_1}{0})\qquad C(\stackrel{x_2}{9}~,~\stackrel{y_2}{-8}) ~\hfill BC=\sqrt{[ 9- 8]^2 + [ -8- 0]^2} \\\\\\ BC=\sqrt{1^2+(-8)^2}\implies \boxed{BC=\sqrt{65}}](https://tex.z-dn.net/?f=B%28%5Cstackrel%7Bx_1%7D%7B8%7D~%2C~%5Cstackrel%7By_1%7D%7B0%7D%29%5Cqquad%20C%28%5Cstackrel%7Bx_2%7D%7B9%7D~%2C~%5Cstackrel%7By_2%7D%7B-8%7D%29%20~%5Chfill%20BC%3D%5Csqrt%7B%5B%209-%208%5D%5E2%20%2B%20%5B%20-8-%200%5D%5E2%7D%20%5C%5C%5C%5C%5C%5C%20BC%3D%5Csqrt%7B1%5E2%2B%28-8%29%5E2%7D%5Cimplies%20%5Cboxed%7BBC%3D%5Csqrt%7B65%7D%7D)
now, we could check for the CA distance, however, we already know that AB ≠ BC, so there's no need.