Answer:
h = 3.5 m
Explanation:
First, we will calculate the final speed of the ball when it collides with a seesaw. Using the third equation of motion:
where,
g = acceleration due to gravity = 9.81 m/s²
h = height = 3.5 m
vf = final speed = ?
vi = initial speed = 0 m/s
Therefore,
Now, we will apply the law of conservation of momentum:
where,
m₁ = mass of colliding ball = 3.6 kg
m₂ = mass of ball on the other end = 3.6 kg
v₁ = vf = final velocity of ball while collision = 8.3 m/s
v₂ = vi = initial velocity of other end ball = ?
Therefore,
Now, we again use the third equation of motion for the upward motion of the ball:
where,
g = acceleration due to gravity = -9.81 m/s² (negative for upward motion)
h = height = ?
vf = final speed = 0 m/s
vi = initial speed = 8.3 m/s
Therefore,
<u>h = 3.5 m</u>
Answer:
Explanation:
a) the speed increment of the hammer as it drops past the first window, is greater than that of the speed of the hammer as it drops past the second window. This can also be translated as saying that the hammer spent more time at the second window.
b) III
The best answer would be answer III, The hammer spends more time dropping past window 1, which I had already included in my explanation in (a) above.
Answer:
5080.86m
Explanation:
We will divide the problem in parts 1 and 2, and write the equation of accelerated motion with those numbers, taking the upwards direction as positive. For the first part, we have:
We must consider that it's launched from the ground () and from rest (), with an upwards acceleration that lasts a time t=9.7s.
We calculate then the height achieved in part 1:
And the velocity achieved in part 1:
We do the same for part 2, but now we must consider that the initial height is the one achieved in part 1 () and its initial velocity is the one achieved in part 1 (), now in free fall, which means with a downwards acceleration . For the data we have it's faster to use the formula , where d will be the displacement, or difference between maximum height and starting height of part 2, and the final velocity at maximum height we know must be 0m/s, so we have:
Then, to get , we do:
And we substitute the values:
Assuming that reaching a height 0 doesn’t stop the ball, and that it accelerates at 9.8 m/s^2, the ball would be traveling at 0.5 + 0.7*9.8 = 7.36 m/s downwards.
<h3><u>Answer;</u></h3>
B. constant acceleration.
<h3><u>Explanation</u>;</h3>
- Free fall is the type of motion of a body or an object when only gravity is acting on it.
- <em><u>All objects undergo free fall on the earth surface at the same rate irrespective of their mass. This is because the gravitational field on the surface of the earth 9.8 N/kg, causes and acceleration equivalent to 9.8 m/s/s of any object in free fall motion.</u></em>
- Therefore,<u> the acceleration of any freely falling object near the surface of the earth is 9.8 m/s².</u>