Answer:
[Cr(NH3)6.]C13
Explanation:
Alfred Werner's coordination theory (1893) recognized two kinds of valency;
Primary valency which are nondirectional and secondary valency which are directional.
Hence, the number of counter ions precipitated from a complex depends on the primary valency of the central metal ion in the complex.
We must note that it is only these counter ions that occur outside the coordination sphere that can be precipitated by AgNO3.
If we consider the options carefully, only [Cr(NH3)6.]C13 possess counter ions outside the coordination sphere which can be precipitated when treated with aqueous AgNO3.
Answer:
91.16% has decayed & 8.84% remains
Explanation:
A = A₀e⁻ᵏᵗ => ln(A/A₀) = ln(e⁻ᵏᵗ) => lnA - lnA₀ = -kt => lnA = lnA₀ - kt
Rate Constant (k) = 0.693/half-life = 0.693/10³yrs = 6.93 x 10ˉ⁴yrsˉ¹
Time (t) = 1000yrs
A = fraction of nuclide remaining after 1000yrs
A₀ = original amount of nuclide = 1.00 (= 100%)
lnA = lnA₀ - kt
lnA = ln(1) – (6.93 x 10ˉ⁴yrsˉ¹)(3500yrs) = -2.426
A = eˉ²∙⁴²⁶ = 0.0884 = fraction of nuclide remaining after 3500 years
Amount of nuclide decayed = 1 – 0.0884 = 0.9116 or 91.16% has decayed.
Answer:
in both nucleophil attach the c and leaving group leave but in acyl nu. subsituation c of carbonyl because of double bond with o have bigger positive charge and is better electrophil so do it faster,also alkyl nu. subsituation can have rearangment if going from sn1 and in sn2 sterichemistry of molecule change , acyl nu. subsituation most of time is better
I don’t! Know bit I guess it’s C