Answer:
in this situation I would a little bold
Explanation:
first I don't know what extinguisher I would use pretty much any that helps with fires. I'll back people up, take the hood and put it on the small fire that way it will light out more and if I open the hood and there still a little fire I would use the extinguisher and no one gets hurt :)
The motivation to abstain from adding water to concentrated acids is that, with a few acids, amid weakening, a considerable measure of warmth is discharged, by adding the corrosive to the water, the generally extensive measure of water will retain the warmth. On the off chance that you added water to concentrated corrosive when you initially beginning pouring the water, it could get sufficiently hot for the little measure of water that was filled all of a sudden bubble and splatter corrosive on you. Concentrated sulfuric corrosive is most famous for doing this, not all acids get that hot on weakening, but rather in the event that you make a propensity for continually adding the corrosive to water for every one of them, you can't turn out badly.
Cost per mole
Table salt : Rs 0.878
Table sugar : Rs 23.63
<h3>Further explanation</h3>
Given
Cost table salt (NaCl) = 15/kg
Cost table sugar(sucrose-C12H22O11) = 69/kg
Required
cost per mole
Solution
mol of 1 kg Table salt(NaCl ,MW= 58.5 g/mol) :

mol of 1 kg Table sugar(C12H22O11 ,MW= 342 g/mol) :

Answer:
Of lower concentration or less concentrated
Explanation:
Osmosis is the movement of solvent from a region of lower concentration of solute to a region of higher concentration of solute through a semipermeable membrane in order to equalize the concentration of the solutions on both sides.
Since the membrane of the bag is semipermeable, then the fact that the bag in the beaker decreased in size, lost volume, and became flaccid indicates that the solution in the bag is of lower solute concentration than the solution in the beaker hence the movement of water molecules into the beaker by osmosis.