We actually don't need to know how far he/she is standing from the net, as we know that the ball reaches its maximum height (vertex) at the net. At the vertex, it's vertical velocity is 0, since it has stopped moving up and is about to come back down, and its displacement is 0.33m. So we use v² = u² + 2as (neat trick I discovered just then for typing the squared sign: hold down alt and type 0178 on ur numpad wtih numlock on!!!) ANYWAY....... We apply v² = u² + 2as in the y direction only. Ignore x direction.
IN Y DIRECTION: v² = u² + 2as 0 = u² - 2gh u = √(2gh) (Sub in values at the very end)
So that will be the velocity in the y direction only. But we're given the angle at which the ball is hit (3° to the horizontal). So to find the velocity (sum of the velocity in x and y direction on impact) we can use: sin 3° = opposite/hypotenuse = (velocity in y direction only) / (velocity) So rearranging, velocity = (velocity in y direction only) / sin 3° = √(2gh)/sin 3° = (√(2 x 9.8 x 0.33)) / sin 3° = 49 m/s at 3° to the horizontal (2 sig figs)
Rocky,hot,magma,underground and much more
Melting
we know that ice melts at 0 ⁰C. in the graph, at position B, the temperature is constant, which indicates that phase change is taking place there. at B , from the graph , we also notice that the temperature is constant at value 0 ⁰C. this indicates that ice at 0 ⁰C is converting to water at 0 ⁰C there at position B in the graph.
hence the correct choice is Melting.
Answer:
ωi = 15.4 rev/sec
Explanation:
Since the movement of the fan is rotating, we are thus dealing with Rotational motion. In rotational motion, for angular speed to take place also means angular acceleration is also occurring.
angular acceleration = α = (change in speed)/(change in time)
angular acceleration = α = Δw/Δt = (ω - ωi) /(t- t₀) ..........(equation 1)
α = (ω -ωi) /(t- 0)
α = (ω-ωi) /t
ωi = ω - αt ......................................(equation 2)
where ωi is the initial angular speed.
We replace the values for ω, t and α
ωi = 105 rad/sec - ( 4.4 rad/sec² )(1.85s) = 96.86 rad/s = 15.415747788 rev/sec
The speed of an object can be determined from the distance vs time graph.
You know that speed = distance/time
in the graph, distance/time = slope of the curve.
So SPEED IS GIVEN BY THE SLOPE of the curve in the graph.
● If the distance vs time curve is a straight line, parallel to time axis(x-axis), slope is 0. That means speed is 0. So the object is at rest.
● If the distance vs time curve is a straight line, with some non-zero slope; That means speed is nonzero and constant. So the object is in uniform motion.
● If the distance vs time curve is a curved, the slope is changing. That means speed is changing. So the object is in an accelerated motion.