Answer:
The atmospheric pressure is
.
Explanation:
Given that,
Atmospheric pressure
drop height h'= 27.1 mm
Density of mercury 
We need to calculate the height
Using formula of pressure

Put the value into the formula



We need to calculate the new height




We need to calculate the atmospheric pressure
Using formula of atmospheric pressure

Put the value into the formula


Hence, The atmospheric pressure is
.
It's the fourth choice.
This is because, since we are closer to the Earth, the Earth will have a stronger gravitational pull on us since again, we are closer.
That also explains tides, but that's just getting off topic. Hope I helped.
Answer:
The correct answer is Dean has a period greater than San
Explanation:
Kepler's third law is an application of Newton's second law where the force is the universal force of attraction for circular orbits, where it is obtained.
T² = (4π² / G M) r³
When applying this equation to our case, the planet with a greater orbit must have a greater period.
Consequently Dean must have a period greater than San which has the smallest orbit
The correct answer is Dean has a period greater than San
Answer:
cnbzdbhvhndjcn bvhdbvjsdhvjsbdjcbhkavwhe4w7334856743534685347856784687367856732346356675ygafjdbvc
Explanation:
Answer:
A kg of cotton is heavier.
Explanation:
Because in air, cotton gets upthrust that's why weighing machine gives less weight than its actually have.
for eg: If cotton has 800g weight, the machine shows a kg(1kg) when measure in air due to upthrust.
I hope this will be helpful for you.