Answer:
Tendons connect the skeletal system to the muscular system by attaching muscle to bone. When muscle contracts, the tendon acts on the bone, causing movement. Joints, the point at which two or more bones connect, can be fixed, slightly movable, or freely movable.
The molar extinction coefficient is 15,200
.
The formula to be used to calculate molar extinction coefficient is -
A = ξcl, where A represents absorption, ξ refers molar extinction coefficient, c refers to concentration and l represents length.
The given values are in required units, hence, there is no need to convert them. Directly keeping the values in formula to find the value of molar extinction coefficient.
Rewriting the formula as per molar extinction coefficient -
ξ = 
ξ = 
Performing multiplication in denominator to find the value of molar extinction coefficient
ξ =
Performing division to find the value of molar extinction coefficient
ξ = 15,200 
Hence, the molar extinction coefficient is 15,200
.
Learn more about molar extinction coefficient -
brainly.com/question/14744039
#SPJ4
Answer:
2 KClO3 (s) = 2 KCl (s) + 3 O2 (g)
2.5 g x g
Explanation:
x g O2 = 2.5 g KClO3 x (1 mol KClO3) x (3 mol O2) x (32 g O2) = 0.98 g O2
(122.5 g KClO3) (2 mol KClO3) (1 mol O2)
2 KClO3 (s) 2 KCl (s) + 3 O2 (g)
2.5 g x g
x g KCl = 2.5 g KClO3 x (1 mol KClO3) x (2 mol KClO3) x (74.5 g KCl) = 1.52 g KCl
(122.5 g KClO3) (2 mol KClO3) (1 mol KCl)
2 KClO3 (s) 2 KCl (s) + 3 O2 (g)
x mol 10 mol
x mol KClO3 = 10 mol O2 x (2 mol KClO3) = 6.7 mol KClO3
(3 mol O2)
I think letter b were you put the letters so
Answer: 1. 0.045moles
2. 2.10 grams
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number
of particles.
To calculate the moles, we use the equation:
1. 
2. Mass of 