1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
EleoNora [17]
3 years ago
11

Help please ASAP !! Thanks

Physics
1 answer:
SVEN [57.7K]3 years ago
8 0

Answer:

I think its C

Explanation:

You might be interested in
The speed of sound is measured to be 340 m/s on a certain day.
ziro4ka [17]
Answer: 1,224 km/h

Explanation:

To do this, we pick the first unit and convert
Picking m first and converting to km:
Since we're converting from a non-prefix to a prefix, we divide the value by the prefix were taking it to. In this case, kilo = 10³ which means we're going to divide our value by 1000 to convert it from m to km
340 m/s ÷ 1000 = 0.34 km/s
Now, let's convert our seconds to hour:
We'll need to calculate how many hours is equivalent to one second first;
1 hr = 60×60 seconds
X hr = 1 second
*Cross multiply*
1 × 1 = X × 60 × 60
1 = 3,600 X
X = 1 / 3,600
X = 2.778×10⁻⁴ hour
So, in the place of "1 Second", we're going to be inserting 2.778×10⁻⁴ hour instead
0.34 km / s = 0.34 km / 2.778×10⁻⁴ hour
(0.34 / 2.778×10⁻⁴) km/hour
1,224 km/h.
340 m/s = 1,224 km/h
6 0
2 years ago
A car speeding down the highway honks its horn, which has a frequency 392 Hz, but a resting bystander hears the frequency 440 Hz
Natali [406]

Answer:

37.42 m/s

Explanation:

We know that apparent frequency, \bar f is given by

\bar f=f\frac {V}{V-V_s} where f is the given frequency in this case 392, V is the speed of sound in air which is given as 343 and V_s is the speed of car which is unknown, \bar f is given as 440 Hz

440=392\times \frac {343}{343-V_s}\\343-V_s=392\times \frac {343}{440}=305.5818182\\V_s=343-305.5818182=37.41818182\approx 37.42 m/s

8 0
3 years ago
An unstable particle at rest breaks up into two fragments of unequal mass. The mass of the lighter fragment is equal to 2.90 ✕ 1
motikmotik

Answer:

The speed of the heavier fragment is 0.335c.

Explanation:

Given that,

Mass of the lighter fragment M_{l}=2.90\times10^{-28}\ kg

Mass of the heavier fragment M_{h}=1.62\times10^{-27}\ Kg

Speed of lighter fragment = 0.893c

We need to calculate the speed of the heavier fragment

Let v is the speed of the second fragment after decay

Using conservation of relativistic momentum

0=\drac{m_{1}v_{1}}{\sqrt{1-\dfrac{v_{1}^2}{c^2}}}-\drac{m_{2}v_{2}}{\sqrt{1-\dfrac{v_{1}^2}{c^2}}}

\drac{m_{1}v_{1}}{\sqrt{1-\dfrac{v_{1}^2}{c^2}}}=\drac{m_{2}v_{2}}{\sqrt{1-\dfrac{v_{1}^2}{c^2}}}

\dfrac{2.90\times10^{-28}\times0.893c}{\sqrt{1-(0.893)^2}}=\dfrac{1.62\times10^{-27}v_{2}}{\sqrt{1-\dfrac{v_{2}^2}{c^2}}}

\dfrac{v_{2}}{\sqrt{1-\dfrac{v_{2}^2}{c^2}}}=\dfrac{2.90\times10^{-28}\times0.893c}{1.62\times10^{-27}\times0.45}

\dfrac{v_{2}}{\sqrt{1-\dfrac{v_{2}^2}{c^2}}}=0.355c

\dfrac{v_{2}}{1-\dfrac{v_{2}^{2}}{c^2}}=(0.355c)^2

\dfrac{1-\dfrac{v_{2}^2}{c^2}}{v_{2}^2}=\dfrac{1}{(0.355c)}

\dfrac{1}{v_{2}^2}-\dfrac{1}{c^2}=\dfrac{1}{(0.355c)^2}

\dfrac{1}{v_{2}^2}=\dfrac{1}{c^2}+\dfrac{1}{0.126c^2}

\dfrac{1}{v_{2}^2}=\dfrac{1}{c^2}(1+\dfrac{1}{0.126})

\dfrac{1}{v_{2}^2}=\dfrac{8.93}{c^2}

v_{2}^2=\dfrac{c^2}{8.93}

v_{2}=0.335c

Hence, The speed of the heavier fragment is 0.335c.

7 0
3 years ago
Ex 10: My dog runs at 6 m/s for 18 meters. How long did she run for?
Hunter-Best [27]
She ran for 3s

Put 18/6 because in order to find how long she ran for you need to divide the distance by the meters ran, once you do that you will get 3.
7 0
3 years ago
In this experiment you will investigate which of the following properties of Faraday's law of electromagnetic induction? (Select
11Alexandr11 [23.1K]

Answer:

Answered

Explanation:

Part A

According to Faraday's law the induced emf in coil is equal to negative of its rate of change of magnetic flux time the number of turns in the coil.

\epsilon = -N\frac{d\phi}{dt}= -N\Delta\frac{BA}{\Delta t}

When an emf generated by a change of magnetic flux, produced current of whose magnetic field opposes the change  which produces it.

By the above equation the correct options are 1,2 and 4

Part B

Large signals of  frequency of 60Hz are measured by osciloscope.

Hence the correct option is part 1.

3 0
3 years ago
Other questions:
  • Which is the correct formula for sulfur dichloride
    8·2 answers
  • Which of these statements is true?
    11·2 answers
  • A piece of fruit is hanging from a tree what energy is being used
    9·1 answer
  • A shuffleboard disk is accelerated to a speed of 5.8 m/s and released. If the coefficient of kinetic friction between the disk a
    15·1 answer
  • You are standing on a large sheet of frictionless ice and holding a large rock. In order to get off the ice, you throw the rock
    5·1 answer
  • Carmen is heating some water and trying to measure the temperature of water using a Celsius thermometer. Which measurement can s
    7·2 answers
  • Which of the following has the greatest magnitude?
    13·1 answer
  • I have a doubt on heat and temperature. I need help with this science question and here the question: The water in a lake just r
    13·1 answer
  • Help with this question please :>
    15·2 answers
  • A 500-turn coil with an average radius of 0.06 m is placed in a uniform magnetic field so that o=40 degrees. The field increases
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!