Answer:
How to Test Hypotheses
State the hypotheses. Every hypothesis test requires the analyst to state a null hypothesis and an alternative hypothesis. ...
Formulate an analysis plan. The analysis plan describes how to use sample data to accept or reject the null hypothesis. ...
Analyze sample data. ...
Interpret the results.
Answer:
0.47 N
Explanation:
Here we have a ball in motion along a circular track.
For an object in circular motion, there is a force that "pulls" the object towards the centre of the circle, and this force is responsible for keeping the object in circular motion.
This force is called centripetal force, and its magnitude is given by:

where
m is the mass of the object
is the angular velocity
r is the radius of the circle
For the ball in this problem we have:
m = 40 g = 0.04 kg is the mass of the ball
is the angular velocity
r = 30 cm = 0.30 m is the radius of the circle
Substituting, we find the force:

The correct answer is: Option (D) length, speed
Explanation:
According to Faraday's Law of Induction:
ξ = Blv
Where,
ξ = Emf Induced
B = Magnetic Induction
l = Length of the conductor
v = Speed of the conductor.
As you can see that ξ (Emf/voltage induction) is directly proportional to the length and the speed of the conductor. Therefore, the correct answer will be Option (D) Length, Speed
It's definitely not B or C. There are things missing from A and D so we can't narrow it down any farther.
Answer:
a) y = 2.4 x 10⁻³ m = 0.24 cm
b) y = 3.2 x 10⁻³ m = 0.32 cm
Explanation:
The formula of Young's Double Slit experiment will be used here:

where,
y = distance between dark spots = ?
λ = wavelength
L = distance of screen = 2 m
d = slit width = 4 x 10⁻⁴ m
a) FOR λ = 480 nm = 4.8 x 10⁻⁷ m:

<u>y = 2.4 x 10⁻³ m = 0.24 cm</u>
<u></u>
a) FOR λ = 640 nm = 6.4 x 10⁻⁷ m:

<u>y = 3.2 x 10⁻³ m = 0.32 cm</u>