Yo my knowledge, refraction.
Answer:
Boiling Point
Explanation:
When a liquid changes to a gas is called the boiling point.
Answer:
a) m=20000Kg
b) v=0.214m/s
Explanation:
We will separate the problem in 3 parts, part A when there were no coals on the car, part B when there is 1 coal on the car and part C when there are 2 coals on the car. Inertia is the mass in this case.
For each part, and since the coals are thrown vertically, the horizontal linear momentum p=mv must be conserved, that is,
, were each velocity refers to the one of the car (with the eventual coals on it) for each part, and each mass the mass of the car (with the eventual coals on it) also for each part. We will write the mass of the hopper car as
, and the mass of the first and second coals as
and
respectively
We start with the transition between parts A and B, so we have:

Which means

And since we want the mass of the first coal thrown (
) we do:



Substituting values we obtain

For the transition between parts B and C, we can write:

Which means

Since we want the new final speed of the car (
) we do:

Substituting values we obtain

Answer:
the work done by the motor is 531,45 Joules
Explanation:
Using a sketch of the possible conditions, we need to find the distance that the block was moved, in order to find the work done by the electrical motor.
The sketch could be seen in the attached image.
Explanation:
Bulbs are nothing but resistors that glow when current passes through them.
In Set A, the bulbs (resistors) are connected parallely to each other, this means that even if one of the bulbs fuses or removed, the circuit will still be completed and others continue to glow.
And in parallel connection if the resistance of the two resistors are same powered delivered to each is same.
In Set B, bulbs are in series connection, this means that when one of the bulb is removed or fuses, the circuit will break and other bulbs can not operate.In this situation as well if the resistance of two resistors is same then the power delivered is same.