Answer:
1) El diámetro es de aproximadamente 913,987 cm.
2) La fuerza del cilindro es 5576850 kgf
Explanation:
1) Los parámetros dados son;
El volumen del aire = 13,122 litros = 13122000 cm³
La presión de trabajo = 8.5 kgf / cm²
La longitud del cilindro = 20 cm.
Por lo tanto, tenemos;
El área de la base del cilindro = π · r² = 13122000 cm³ / (20 cm) = 656100 cm²
r = √ (656100 / π) ≈ 456,994 cm
El diámetro = 2 × r ≈ 2 × 456.994 ≈ 913.987 cm
El diámetro ≈ 913,987 cm
2) La fuerza del cilindro = El área de la base del cilindro × La presión de trabajo
∴ La fuerza del cilindro = 656100 cm² × 8.5 kgf / cm² = 5576850 kgf
La fuerza del cilindro = 5576850 kgf
To solve this problem we will use the concepts related to Torque as a function of the Force in proportion to the radius to which it is applied. In turn, we will use the concepts of energy expressed as Work, and which is described as the Torque's rate of change in proportion to angular displacement:

Where,
F = Force
r = Radius
Replacing we have that,



The moment of inertia is given by 2.5kg of the weight in hand by the distance squared to the joint of the body of 24 cm, therefore


Finally, angular acceleration is a result of the expression of torque by inertia, therefore



PART B)
The work done is equivalent to the torque applied by the distance traveled by 60 °° in radians
, therefore



To solve this problem it is necessary to apply the concepts related to mutual inductance in a solenoid.
This definition is described in the following equation as,

Where,
permeability of free space
Number of turns in solenoid 1
Number of turns in solenoid 2
Cross sectional area of solenoid
l = Length of the solenoid
Part A )
Our values are given as,





Substituting,



PART B) Considering that many of the variables remain unchanged in the second solenoid, such as the increase in the radius or magnetic field, we can conclude that mutual inducantia will appear the same.
It’s c.) I think so at least
Answer:
Final velocity of electron,
Explanation:
It is given that,
Electric field, E = 1.55 N/C
Initial velocity at point A, 
We need to find the speed of the electron when it reaches point B which is a distance of 0.395 m east of point A. It can be calculated using third equation of motion as :
........(1)
a is the acceleration, 
We know that electric force, F = qE

Use above equation in equation (1) as:


v = 647302.09 m/s
or

So, the final velocity of the electron when it reaches point B is
. Hence, this is the required solution.