1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
USPshnik [31]
3 years ago
7

Two sound waves of equal amplitude interference so that compression of one wave falls on the rarefaction of the other. Which sta

tement is true?
A. No sound is heard

B. The loudness of the sound increase

C. There is no change in the sound

D. The pitch of the sound increases
Physics
1 answer:
iris [78.8K]3 years ago
3 0
<span>A. No sound is heard 
A*sin(wt)+(-A)*sin(wt)=0 - no sound

</span>
You might be interested in
What will the stopping distance be for a 2,000-kg car if -2,000 N of force are applied when the car is traveling 20 m/s?
astraxan [27]

Answer is B- 200 m

Given:

m (mass of the car) = 2000 Kg

F = -2000 N

u(initial velocity)= 20 m/s.

v(final velocity)= 0.

Now we know that

<u>F= ma</u>

Where F is the force exerted on the object

m is the mass of the object

a is the acceleration of the object

Substituting the given values

-2000 = 2000 × a

a = -1 m/s∧2

Consider the equation

<u>v=u +at</u>

where v is the initial velocity

u is the initial velocity

a is the acceleration

t is the time

0= 20 -t

t=20 secs


s = ut +1/2(at∧2)

where s is the displacement of the object

u is the initial velocity

t is the time

v is the final velocity

a is the acceleration

s= 20 ×20 +(-1×20×20)/2

<u>s= 200 m</u>


3 0
3 years ago
Read 2 more answers
What are the forces that act on the ball?​
scoundrel [369]

Answer:

This slide shows the three forces that act on a baseball in flight. The forces are the weight, drag, and lift. Lift and drag are actually two components of a single aerodynamic force acting on the ball. Drag acts in a direction opposite to the motion, and lift acts perpendicular to the motion

4 0
3 years ago
3m/s for 12 seconds how dar would he walk
Sunny_sXe [5.5K]
I think 36m/12s because 3×12 =36
4 0
3 years ago
During the middle of a family picnic, Barry Allen received a message that his friends Bruce and Hal
weeeeeb [17]

The kinematics of the uniform motion and the addition of vectors allow finding the results are:

  • The  Barry's initial trajectory is 94.30 10³ m with n angles of θ = 138.8º
  • The return trajectory and speed are v = 785.9 m / s, with an angle of 41.2º to the South of the East

Vectors are quantities that have modulus and direction, so they must be added using vector algebra.

A simple method to perform this addition in the algebraic method which has several parts:

  • Vectors are decomposed into a coordinate system
  • The components are added
  • The resulting vector is constructed

 Indicate that Barry's velocity is constant, let's find using the uniform motion thatthe distance traveled in ad case

              v = \frac{\Delta d}{t}

              Δd = v t

Where  v is the average velocity, Δd the displacement and t the time

We look for the first distance traveled at speed v₁ = 600 m / s for a time

          t₁ = 2 min = 120 s

          Δd₁ = v₁ t₁

          Δd₁ = 600 120

          Δd₁ = 72 10³ m

Now we look for the second distance traveled for the velocity v₂ = 400 m/s    

  time t₂ = 1 min = 60 s

          Δd₂ = v₂ t₂

          Δd₂ = 400 60

          Δd₂ = 24 103 m

   

In the attached we can see a diagram of the different Barry trajectories and the coordinate system for the decomposition,

We must be careful all the angles must be measured counterclockwise from the positive side of the axis ax (East)

Let's use trigonometry for each distance

Route 1

          cos (180 -35) = \frac{x_1}{\Delta d_1}

          sin 145 = \frac{y_1}{\Delta d1}

          x₁ = Δd₁ cos 125

          y₁ = Δd₁ sin 125

          x₁ = 72 103 are 145 = -58.98 103 m

          y₁ = 72 103 sin 155 = 41.30 10³ m

Route 2

          cos (90+ 30) = \frac{x_2}{\Delta d_2}

          sin (120) = \frac{y_2}{\Delta d_2}

          x₂ = Δd₂ cos 120

          y₂ = Δd₂ sin 120

          x₂ = 24 103 cos 120 = -12 10³ m

           y₂ = 24 103 sin 120 = 20,78 10³ m

             

The component of the resultant vector are

              Rₓ = x₁ + x₂

              R_y = y₁ + y₂

              Rx = - (58.98 + 12) 10³ = -70.98 10³ m

              Ry = (41.30 + 20.78) 10³ m = 62.08 10³ m

We construct the resulting vector

Let's use the Pythagoras' Theorem for the module

             R = \sqrt{R_x^2 +R_y^2}

             R = \sqrt{70.98^2 + 62.08^2}   10³

             R = 94.30 10³ m

We use trigonometry for the angle

             tan θ ’= \frac{R_y}{R_x}

             θ '= tan⁻¹ \frac{R_y}{R_x}

             θ '= tan⁻¹ \frac{62.08}{70.98}

             θ ’= 41.2º

Since the offset in the x axis is negative and the displacement in the y axis is positive, this vector is in the second quadrant, to be written with respect to the positive side of the x axis in a counterclockwise direction

            θ = 180 - θ'

            θ = 180 -41.2

            θ = 138.8º

Finally, let's calculate the speed for the way back, since the total of the trajectory must be 5 min and on the outward trip I spend 3 min, for the return there is a time of t₃ = 2 min = 120 s.

The average speed of the trip should be

             v = \frac{\Delta R}{t_3}  

             v = \frac{94.30}{120}  \ 10^3

              v = 785.9 m / s

in the opposite direction, that is, the angle must be

               41.2º to the South of the East

In conclusion, using the kinematics of the uniform motion and the addition of vectors, results are:

  • To find the initial Barry trajectory is 94.30 10³ m with n angles of  138.8º
  • The return trajectory and speed is v = 785.9 m / s, with an angle of 41.2º to the South of the East

Learn more here:  brainly.com/question/15074838

4 0
2 years ago
If two stars are the same size and one is twice the temperature of the other, how much more luminous is the hotter one? quizlit
Dmitriy789 [7]
The hotter star will be 16 times more luminous  - luminosity depends on two things  - the size of the star and the temperature of the star. The hotter a star is, the more energy it will give out. This will give rise to greater luminosity.
3 0
3 years ago
Other questions:
  • If the velocity of an object changes from 15 m/s during a time interval of 4s what is the acceleration of the object
    7·1 answer
  • Newton’s third law of motion is also known as action/_______?
    11·2 answers
  • you're riding on a train that's moving at 5 km/h and you roll a ball down the aisle at 2 km/h in the same direction as the train
    14·1 answer
  • A student stays at her initial position for a bit of time, then walks slowly in a straight line for a while, then stops to rest
    13·1 answer
  • a soccer player kicks a ball with a speed of 30 m/s at an angle of 10. how long does the ball stay in the air?
    12·2 answers
  • A localized impediment to electron flow in a circuit is a:
    6·2 answers
  • What happens to the particles of an object when its temperature increases? *
    13·1 answer
  • 4 kg of water was
    6·1 answer
  • This one too dude help me
    9·1 answer
  • An 80,000 kg plane is flying at 900 km/h at a height of 10 kilometers. What is its total mechanical energy? Group of answer choi
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!