99.0km/h =27.5m/s (this is the initial speed)
The final speed is zero
The distance is 50.0m
Therefore you use the formula:
vfinal²=vinitial²+2ad
a=(vfinal²-vinitial²)/2d
= (0²-27.5²)/(2x50.0)
=-7.5625 or in correct sigdigs -7.56m/s²
Hope this helps!
Answer:
v (minimum speed) = 2.90 m/sec.

Maximum value of speed will occur at lowest point of vertical circle.
Explanation:
a) What minimum speed is necessary so that there is no tension in the string at the top of the circle but the rock stays in the same circular path?
Using the force balance expression at the top of the circle,
Gravitational Force + Tension force = Centrifugal force

Given that : T = 0
R = length of string = 0.86 m
mass of the spinning rock = 0.75 kg


v (minimum speed) = 2.90 m/sec.
b) what is the maximum speed the rock can have so that the string does not break?
Here the force balance at bottom of circle is represented by the illustration:

Given that:
maximum tension T = 45 N
maximum speed v = ??
mass m = 0.75 kg
∴

c)
At what point in the vertical circle does this maximum value occur?
Maximum value of speed will occur at lowest point of vertical circle.
This is so because at the lowest point; the tension in string will be maximum.
Answer:
a) f=0.1 Hz ; b) T=10s
c)λ= 36m
d)v=3.6m/s
e)amplitude, cannot be determined
Explanation:
Complete question is:
Determine, if possible, the wave's (a) frequency, (b) period, (c) wavelength, (d) speed, and (e) amplitude.
Given:
number of wave crests 'n'= 5
pass in a time't' 54.0s
distance between two successive crests 'd'= 36m
a) Frequency of the waves 'f' can be determined by dividing number of wave crests with time, so we have
f=n/t
f= 5/ 54 => 0.1Hz
b)The time period of wave 'T' is the reciprocal of the frequency
therefore,
T=1/f
T=1/0.1
T=10 sec.
c)wavelength'λ' is the distance between two successive crests i.e 36m
Therefore, λ= 36m
d) speed of the wave 'v' can be determined by the product of frequency and wavelength
v= fλ => 0.1 x 36
v=3.6m/s
e) For amplitude, no data is given in this question. So, it cannot be determined.
Answer:
Its mechanical energy is the same.
Explanation:
If forces are only conservative, the mechanical energy will be the same.
It can be different if energy get transformed in another kind of energy like elastic energy for example, although the amount of energy is always the same.
If we just have mechanical energy not geting transformed we have:
Em=K+U
Em: Mechanical energy
K: Kinetic energý
U: Potential energy
Then if Kinetic energy decreases 10J, Potential energy will grow up 10J to keep the same amount of mechanical energy.
If the desk doesn't move, then it's not accelerating.
If it's not accelerating, then the net force on it is zero.
If the net force on it is zero, then any forces on it are balanced.
If there are only two forces on it and they're balanced, then they have equal strengths, and they point in opposite directions.
So the friction on the desk must be equal to your<em> 245N</em> .