Answer:
The average of group A is 78.9 and average of group B is 82. Therefore group B has a higher average.
The standard deviation of A is 4.1 and standard deviation of B is 9.23, therefore group A is more consistent.
Step-by-step explanation:
The quiz scores for two different groups of math students are given below.
Group A – 75, 72, 77, 80, 87, 82, 79, 80, 75, 82
Group B – 71, 75, 85, 95, 71, 71, 90, 95, 87, 80
Formula for mean is

The average of group A is

The average of group B is

The average of group A is 78.9 and average of group B is 82. Therefore group B has a higher average.
Formula for standard deviation is

The standard deviation of group A is

The standard deviation of group B is

The standard deviation of A is 4.1 and standard deviation of B is 9.23, therefore group A is more consistent.