Mercury is very harmful to the average human being. the mercury can easily be released from the lamp if the lamp is knocked over and broken. mercury is also harmful if inhaled. sodium on the other hand is not harmful in any way.
A force of 660 n stretches a certain spring a distance of 0.300 m. what is the potential energy of the spring when a 70.0 kg mass hangs vertically from it?
Answer:
Therefore the ratio of diameter of the copper to that of the tungsten is

Explanation:
Resistance: Resistance is defined to the ratio of voltage to the electricity.
The resistance of a wire is
- directly proportional to its length i.e

- inversely proportional to its cross section area i.e

Therefore

ρ is the resistivity.
The unit of resistance is ohm (Ω).
The resistivity of copper(ρ₁) is 1.68×10⁻⁸ ohm-m
The resistivity of tungsten(ρ₂) is 5.6×10⁻⁸ ohm-m
For copper:


......(1)
Again for tungsten:

........(2)
Given that
and 
Dividing the equation (1) and (2)

[since
and
]



Therefore the ratio of diameter of the copper to that of the tungsten is

Answer;
D. rocket engines are not dependent on oxygen from the air.
Explanation;
-Jet engines and rockets work on the same principle. They produce thrust through an internal pressure difference and, as explained by Newton’s Third Law of Motion, eject exhaust gases in an equal and opposite direction.
-The main difference between them is that jets get the oxygen to burn fuel from the air and rockets carry their own oxygen, which allows them to operate in space.
Additionally, Jet engines have two openings (an intake and an exhaust nozzle). Rocket engines only have one opening (an exhaust nozzle).