Let l = Q/L = linear charge density. The semi-circle has a length L which is half the circumference of the circle. So w can relate the radius of the circle to L by
<span>C = 2L = 2*pi*R ---> R = L/pi </span>
<span>Now define the center of the semi-circle as the origin of coordinates and define a as the angle between R and the x-axis. </span>
<span>we can define a small charge dq as </span>
<span>dq = l*ds = l*R*da </span>
<span>So the electric field can be written as: </span>
<span>dE =kdq*(cos(a)/R^2 I_hat + sin(a)/R^2 j_hat) </span>
<span>dE = k*I*R*da*(cos(a)/R^2 I_hat + sin(a)/R^2 j_hat) </span>
<span>E = k*I*(sin(a)/R I_hat - cos(a)/R^2 j_hat) </span>
<span>E = pi*k*Q/L(sin(a)/L I_hat - cos(a)/L j_hat)</span>
The correct answer for this question is this one: "The drops dripped from a bloody knife about 2 ft above the ground."
<span>On a floor directly underneath a second-floor balcony, there are several spherical drops of blood about 7 mm in diameter. The statement that best accounts for the drops is that <em>the </em></span><span><em>drops dripped from a bloody knife about 2 ft above the ground.</em>
</span>
Hope this helps answer your question and have a nice day ahead.
The time taken for the athlete to finish the race is 20 s (Option A)
<h3>What is power? </h3>
Power is simply defined as the rate at which work is done. It can be expressed mathematically as
Power (P) = work (W) / time (t)
But
Work = weight × distance
Therefore,
Power = (weight × distance ) / time
<h3>How to determine the time </h3>
- Mass (m) = 55 Kg
- Acceleration due to gravity (g) = 9.8 m/s²
- Weight = mg = 55 × 9.8 = 539 N
- Power (P) = 5.4 KW = 5.4 × 1000 = 5400 W
- Distance (d) = 200 m
- Time (t) =?
Power = (weight × distance ) / time
5400 = (539 × 200) / t
5400 = 107800 / t
Cross multiply
5400 × t = 107800
Divide both side by 5400
t = 107800 / 5400
t = 20 s
Learn more about power:
brainly.com/question/5684937
#SPJ1
So the initial velocity is 15 m/s, the final velocity is 0 since it's at a complete stop and time is 10 seconds. Therefore:

Therefore, the acceleration is -1.5 m/s^2. The reason it's negative is due to the fact that the vector is going against it's original movement since it's decelerating.
The time described above is known as the waves Period.
The time which it takes for a particle to complete one full cycle is known as the period. Period is normally measured in seconds. Frequency on the other hand is the number of cycles which are completed in a given period of time e.g a second. periodic time T is given by reciprocal of frequency (1/f).