Answer:
b)
Explanation:
By convention, the electric field lines (which are tangent to the direction of the electric field at a given point) always begin at positive charges, and finish at negative charges.
This is a consequence of the convention that states that the electric field has the direction of the trajectory of a positive test charge when released from rest in an electric field.
(As the positive charge would move away from positive charges and would be attracted by negative ones).
So, the combination of answers that is true is b) (positive, negative, positive).
Answer:
R = 2Ω
Explanation:
Potential difference (V) = current (I) * Resistance (R)
V = IR
I = 2.0A
V = 10v
R = ?
V = IR
R = V / I
R = 10 / 2
R = 2Ω
The resistance across the wire is 2Ω
Answer:
4 hoop, disk, sphere
Explanation:
Because
We are given data that
Hoop, disk, sphere have Same mass and radius
So let
And Initial angular velocity, = 0
The Force on each be F
And Time = t
Also let
Radius of each = r
So let's find the inertia shall we!!
I1 = m r² /2
= 0.5 mr² the his is for dis
I2 = m r² for hoop
And
Moment of inertia of sphere wiil be
I3 = (2/5) mr²
= 0.4 mr²
So
ωf = ωi + α t
= 0 + ( τ / I ) t
= ( F r / I ) t
So we can see that
ωf is inversely proportional to moment of inertia.
And so we take the
Order of I ( least to greatest ) :
I3 (sphere) , I1 (disk) , I2 (hoop) , ,
Order of ωf: ( least to greatest)
That of omega xf is the reverse of inertial so
hoop, disk, sphere
Option - 4
Speed of the car given initially
v = 18 m/s
deceleration of the car after applying brakes will be
a = 3.35 m/s^2
Reaction time of the driver = 0.200 s
Now when he see the red light distance covered by the till he start pressing the brakes


Now after applying brakes the distance covered by the car before it stops is given by kinematics equation

here
vi = 18 m/s
vf = 0
a = - 3.35
so now we will have


So total distance after which car will stop is


So car will not stop before the intersection as it is at distance 20 m