<span>You can use the equation
V_xf = V_xi + a_x(t)
V_xf = 20.0m/s
V_xi = 0m/s
ax = 2.0
t
Thus, solve for t and get 10seconds
and then take 5 seconds to break after 20 seconds of driving
so for
a) 10 + 20 + 5 = 35 seconds
</span><span>for part b)
You can use the formula
Delta x/Delta t = average velocity
Need to find xf, knowing xi = 0
Thus, use the formula
x_f = x_i + V_xi(t) + (1/2)a_x(t)^(2)
x_f = 0 + 0(10) + (1/2)(2.0)(10)^(2)
x_f = 100m
so for the first 10 seconds the truck traveled 100ms
At a speed of 20m/s
20m/s = xm/20s
20*20 = x
x = 400
thus we have 100+400 = 500m
then it slows down from 500m to x_f
thus I use the equation
x_f = x_i + (1/2)(V_xf + V_xi)t
x_f = 500 + (1/2)(0 + 20)(5)
x_f = 500 + 50
x_f = 550
therefore the total distance traveled is 550m
</span>
<span>to calculate average velocity
550/35 = 16m/s
thus
V_xavg = 16m/s</span>
Answer:height above ground at which projectile have velocity
0.5v is (0.0375v^2)
Explanation:
Using Vf = Vi - gt
Where Vf is final velocity
Vi is initial velocity
g is the acceleration due to gravity
t is the time taken
So, 0.5v = v - gt
t = 0.05v
Therefore height h = vt - 0.5gt^2
Subtitute t
h = 0.05v^2 - 0.0125v^2
h = 0.0375v^2
The tank pressure is 5.08 kPa and the mass flow rate is 2.6 kg/s.
The given parameters:
- <em>Throat area of the nozzle, </em>
<em> = 10 cm² = 0.001 m²</em> - <em>The exit area of the nozzle, A = 28.96 cm² = 0.002896 m²</em>
- <em>Air pressure at sea level = 101.325 kPa</em>
The ratio of the areas of the converging-diverging nozzle is calculated as follows;

From supersonic isentropic table, at
, we can determine the following;

The tank pressure is calculated as follows;

Thus, the tank pressure is 5.08 kPa and the mass flow rate is 2.6 kg/s.
Learn more about converging-diverging nozzle design here: brainly.com/question/13889483
Answer:
g(h) = g ( 1 - 2(h/R) )
<em>*At first order on h/R*</em>
Explanation:
Hi!
We can derive this expression for distances h small compared to the earth's radius R.
In order to do this, we must expand the newton's law of universal gravitation around r=R
Remember that this law is:

In the present case m1 will be the mass of the earth.
Additionally, if we remember Newton's second law for the mass m2 (with m2 constant):

Therefore, we can see that

With a the acceleration due to the earth's mass.
Now, the taylor series is going to be (at first order in h/R):

a(R) is actually the constant acceleration at sea level
and

Therefore:

Consider that the error in this expresion is quadratic in (h/R), and to consider quadratic correctiosn you must expand the taylor series to the next power:

Answer:
<em>Amplitude= 8 m</em>
Explanation:
<u>The Amplitude of a Wave</u>
Sinusoidal Function refers to a mathematical curve with a smooth and periodic oscillation. Its name comes from the sine function and is characterized by the amplitude or the maximum displacement or distance moved by a point on a vibrating body measured from its equilibrium position.
To calculate the amplitude from a graph, we measure the maximum point and the minimum point the wave reaches. Then we subtract both values and divide the result by 2.
The shown wave in the figure has a maximum value of 8 m and a minimum value of -8 m. The distance from the maximum to the minimum is 8-(-8)= 16 m, thus the amplitude is 16/2= 8m.
Amplitude= 8 m