Answer: The correct answer is "wind direction".
Explanation:
Coriolis effect: This is an apparent deflection of moving air or water caused by the rotation of the earth.
Currents are created by wind. Their directions are determined by Coriolis effect.
Currents are created by wind. The earth is in constant motion. It describes the rotation of the earth which steers winds and the surface current. The ocean surface currents are deflected by Coriolis effect.
The direction of the wind blows from north and south towards equator.
Therefore, the Coriolis effect influences wind direction.
By Gay Lussacs law you can find the pressure. First both temperatures of Celsius must change to Kelvin by adding 273. Temperature one will be 308K and temperature 2 will be 258K
With this info, you can now find the pressure with Lussacs law
P1 = P2
— —
T1 T2
Pressure 1 is given which is 32 psi so just plug it all in and find P2
32 = x
—— ——
308 258
308x = 8256 (Cross multiply)
X = 26.8 (divide both sides by 308)
Answer is 26.8 PSI
This makes sense because as temperature increases pressure increases, as well as when temperature decreases, pressure decreases. Since it’s a colder day the pressure will be lower.
The answer to that is mass and chemical
Answer:
Boiling point
Explanation:
Distillation is one of the most widely used separation technique in chemistry. It is used to separate a mixture of liquid substances with different boiling point. Hence, the basis of the separation is BOILING POINT DIFFERENCE.
In the procedure, the liquid substances are heated until they turn gaseous, which they do at different times considering their different boiling points. The separated components are then converted back to liquid states in a process called CONDENSATION.
Answer:
See explanation
Explanation:
All molecules possess the London dispersion forces. However London dispersion forces is the only kind of intermolecular interaction that exists in nonpolar substances.
So, the only kind of intermolecular interaction that exists in dimethyl ether is London dispersion forces.
As for ethyl alcohol, the molecule is polar due to the presence of polar O-H bond. In addition to London dispersion forces, dipole-dipole interactions and specifically hydrogen bonding also occurs between the molecules.
Because ethyl alcohol is polar, it is more soluble in water than dimethyl ether.