Given:
M = 0.0150 mol/L HF solution
T = 26°C = 299.15 K
π = 0.449 atm
Required:
percent ionization
Solution:
First, we get the van't Hoff factor using this equation:
π = i MRT
0.449 atm = i (0.0150 mol/L) (0.08206 L atm / mol K) (299.15 K)
i = 1.219367
Next, calculate the concentration of the ions and the acid.
We let x = [H+] = [F-]
[HF] = 0.0150 - x
Adding all the concentration and equating to iM
x +x + 0.0150 - x = <span>1.219367 (0.0150)
x = 3.2905 x 10^-3
percent dissociation = (x/M) (100) = (3.2905 x 10-3/0.0150) (100) = 21.94%
Also,
percent dissociation = (i -1) (100) = (</span><span>1.219367 * 1) (100) = 21.94%</span>
Answer: 1.9 x 10²⁴ molecules Na
Explanation: To solve for the molecules of Na, we will use the Avogadro's number.
3.2 moles Na x 6.022 x10²³ molecules Na/ 1 mole Nà
= 1.9 x 10²⁴ molecules Na
the answer is d, cuz i just did it rn on my study island and i got it right :)
Answer:
carbon dioxide
Explanation:
Carbon dioxide -
The gas carbon dioxide has a molecular formula of CO₂ ,
During the burning process of the fossil fuels , carbon dioxide is resealed in numerous amount , which act as a greenhouse gas .
Greenhouse gas - Are the gases which absorbs and release radiation , and are responsible for the greenhouse effect .
The greenhouse gases are - carbon dioxide , water vapor , methane , ozone , nitrous oxide .
Alloys alloys alloys alloysalloys alloysalloys alloysalloys alloysalloys alloysalloys alloysalloys alloysalloys alloysalloys alloysalloys alloysalloys alloysalloys alloysalloys alloysalloys alloysalloys alloysalloys alloysalloys alloysalloys alloysalloys alloysalloys alloysalloys alloys