Answer: 0.0138 m^2 = 138 cm^2
Explanation:
The thermal expansion is the term use for the physical phenomena of dilation of the objects when they are exposed to changes in temperature.
The objects dilate when they are heated and contract when they are cooled.
The dilation is proportional to the change in temperatur.
For linear dilation, the proportionality constant is called linear dilation coefficient of the materials, it is named α and is measured in °C ^-1.
ΔL = α * Lo * ΔT, which means that the dilation (or contraction) is proportional to the product of the original length (Lo) and the change of temperature (ΔT).
There is also superficial dilation, for which the dilation is:
ΔA = β * Ao * ΔT, which means that the superficial dilation (or contraction) is proportional to the product of the original area (Ao) and the change of temperature (ΔT).
It is very interesting and important to solve problems that β = 2α, because regularly you will find the values of α for different materials and so, you just to multiply it times 2 to use β.
For this problem:
- Original area, Ao = area of the flat roof at - 10°C = 2.0m * 3.0m = 6.0 m^2.
- α for aluminum = 24 * 10^ -6 °C^-1.
- ΔT = 38°C - (-10°C) = 48°C
So, ΔA = 6.0m^2 * (2 * 24*10^-6 °C&-1) * 48°C = 0.0138 m^2
And that is the area that should stick out in summer to fit the structure during cold winter nights.
You can pass that number to cm^2 to grasp better the idea of this size:
0.0138 m^2 * (100 cm)^2 / m^2 = 138 cm^2
Answer:
The square of the orbital period of a planet is directly proportional to the cube of the semimajor axis of its orbit.
Explanation:
hope this helps.
Id say this is more of a biology question or even a psychology question , well its not a question at all but the endocrine system is a collection of glands that secrete hormones direct to the blood system (circulatory system) to be sent to the desired / target organ , an example of a gland could be the pituitary gland (located towards rear of brain)
First, we must find the vertical distance traveled upwards by the ball due to the throw. For this, we will use the formula:
2as = v² - u²
Because the final velocity v is 0 in such cases
s = -u²/2a; because both u and a are downwards, the negative sign cancels
s = 14.5² / 2*9.81
s = 10.72 meters
Next, to find the time taken to reach the ground, we need the height above the ground. This is:
45 + 10.72 = 55.72 m
We will use the formula
s = ut + 0.5at²
to find the time taken with the initial velocity u = 0.
55.72 = 0.5 * 9.81 * t²
t = 3.37 seconds
Answer:
43.7 °C
Explanation:
= Coefficient of linear expansion of brass = 
= Coefficient of linear expansion of steel = 
= Initial length of brass = 31 cm
= Initial length of steel = 11 m
= Total change in length = 3 mm
Total change in length would be


The final temperature is 43.7 °C