Answer:
D.None of these
Explanation:
The derivation of acceleration formula:
Let us call the 5kg mass
and the 4kg mass
. If the tension in the string is
then for the mass 
(1).
<em>(the negative sign on the right side indicates that acceleration is downwards)</em>
And for the mass 
(2).
<em> (the acceleration is upwards, hence the positive sign)</em>
Solving for
in the 2nd equation we get:
,
and putting this into the 1st equation we get:


Back to the question:
Using the formula for the acceleration we find


which is the acceleration that none of the given choices offer. Also, the acceleration of the two blocks is the same, because if it weren't, the difference in the instantaneous velocities of the objects would cause the string to break. Therefore, these two reasons make us decide that none of the choices are correct.
Answer:
d = 0.05 [m] = 50 [mm]
Explanation:
We must remember the principle of conservation of energy which tells us that energy is transformed from one way to another. For this case, the initial kinetic energy is transformed into useful work that is equal to the product of force by distance.
![E_{k}=F*d\\400 = 8000*d\\d = 0.05 [m] = 50 [mm]](https://tex.z-dn.net/?f=E_%7Bk%7D%3DF%2Ad%5C%5C400%20%3D%208000%2Ad%5C%5Cd%20%3D%200.05%20%5Bm%5D%20%3D%2050%20%5Bmm%5D)
The standard wave format for any wave is transverse wave
Answer:
cytoplasm and channel gates
Explanation:
The movement originates from the cytoplasm. This is the fluid medium through which ions are shuttle from one place to another. However, though simple as it might appear to be, the movement requires carrier proteins. The are proteins that facilitate in the movement of the ions. These proteins have specially controlled gates called channel proteins. These are regulated proteins that open and close based on hydrogen ion concentration. These proteins are able to facilitate the movement of ATP molecules.
Zero.
Acceleration is defined as the change in velocity over time.
Since in your case there is no change, there is no acceleration, so it is zero:
Or in formula: <span>a=<span><span>Δv</span>t</span></span>
Where a=acceleration, <span>Δv</span>=change in velocity and t=time