Answer:
Yes
Explanation:
Given that the battery is the same the PD ( potential difference ) in the circuit will also be the same likewise the flow of charge in the circuit,
Hence the same amount of charge flow is delivered to any circuit.
attached below are examples
Answer:
<h2>1116.9 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 438 × 2.55
We have the final answer as
<h3>1116.9 N</h3>
Hope this helps you
Answer:
4km
Explanation:
15 minutes is 1/4 of an hour.
1/4 of 16 is 4.
Answer:
A) wood, water, neon gas
Explanation:
Matter, which constitutes every known substances is said to exists in three states namely: gaseous, solid and liquid. Each state of matter contain particles that make up their structure.
- Solids have well arranged particles that are tightly packed together to give it its solid shape. Example is wood
- Liquids have particles that are loosely packed together, hence, can still move about. Example is water
- Gases have particles that are not packed together, hence, their ability to roam freely. Example is neon gas
Based on this, the order of MOST to LEAST ordered particle arrangement is solid - liquid- gas i.e. wood - water - neon gas.
Answer:
The answer is below
Explanation:
A diver works in the sea on a day when the atmospheric pressure is 101 kPa. The diver uses compressed air to breathe under water. 1700 litres of air from the atmosphere is compressed into a 12-litre gas cylinder. The compressed air quickly cools to its original temperature. Calculate the pressure of the air in the cylinder.
Solution:
Boyles law states that the volume of a given gas is inversely proportional to the pressure exerted by the gas, provided that the temperature is constant.
That is:
P ∝ 1/V; PV = constant
P₁V₁ = P₂V₂
Given that P₁ = initial pressure = 101 kPa, V₁ = initial volume = 1700 L, P₂ = cylinder pressure, V₂ = cylinder volume = 12 L. Hence:
P₁V₁ = P₂V₂
100 kPa * 1700 L = P₂ * 12 L
P₂ = (100 kPa * 1700 L) / 12 L
P₂ = 14308 kPa