Answer:
The third drop is 0.26m
Explanation:
The drop 1 impacts at time T is given by:
T=sqrt(2h/g)
T= sqrt[(2×2.4)/9.8]
T= sqrt(4.8/9.8)
T= sqrt(0.4898)
T= 0.70seconds
4th drops starts at dT=0.70/3= 0.23seconds
The interval between the drops is 0.23seconds
Third drop will fall at t= 0.23
h=1/2gt^2
h= 1/2×9.81×(0.23)^2
h= 0.26m
Answer:
The sound intensity of train is 1000 times greater than that of the library.
Explanation:
We have expression for sound intensity level,

A train whistle has a sound intensity level of 70 dB
We have

A library has a sound intensity level of about 40 dB
We also have

Dividing both equations

The sound intensity of train is 1000 times greater than that of the library.
<h2>The temperature of the air is 66.8° C</h2>
Explanation:
From the Newton's velocity of sound relationship , the velocity of sound is directly proportional to the square root of temperature .
In this case The velocity of sound = frequency x wavelength
= 798 x 0.48 = 383 m/sec
Suppose the temperature at this time = T K
Thus 383 ∝
I
The velocity of sound is 329 m/s at 273 K ( given )
Thus 329 ∝
II
Dividing I by II , we have
= 
or
= 1.25
and T = 339.8 K = 66.8° C
Answer:
Phase Difference
Explanation:
When the sound waves have same wavelength, frequency and amplitude we just need the phase difference between them at a particular location to determine whether the waves are in constructive interference or destructive interference.
Interference is a phenomenon in which there is superposition of two coherent waves at a particular location in the medium of propagation.
When the waves are in constructive interference then we get a resultant wave of maximum amplitude and vice-versa in case of destructive interference.
- For constructive interference the waves must have either no phase difference or a phase difference of nλ, where n is any natural number.
- For destructive interference the waves must have a phase difference of n×0.5λ, where n is any odd number.