Answer:
<em>The correct difference is 3.44 ft</em>
Explanation:
The correct difference is given as
D=R_A-R_B
D=9.09-5.65
D=3.44 ft
Answer:
According to the data given in the question, experiment on table two pulling and falling masses are arranged in the fig. 250 g is pulling right side and 100 g pulling down. The gravitational force is common to both the masses, so we cannot say that the block moves towards heavier mass, also the block does not move towards the lighter mass.
Obviously, the effect of heavier mass of 250 g is more on the block, so the block moves towards right bottom corner. i.e., diagonally between two masses
please find the attachment.
Answer:
Here
Explanation:
They don't have free electrons moving around (delocalised electrons) so they can't conduct heat and electricity which gives them a property of good insulators. The insulators stop us having an electric shock because they don't conduct electricity as we use them to insulate metal wires and other metallic things. can i have brainliest now pls!
Answer:
a=3.53 m/s^2
Explanation:
Vo=0 m/s (because he is not moving at the start)
V1=15 m/s
t= 4.25 s
a = (V1-Vo) / t = 15/4.25 = 3.53 m/s^2
a. I've attached a plot of the surface. Each face is parameterized by
•
with
and
;
•
with
and
;
•
with
and
;
•
with
and
; and
•
with
and
.
b. Assuming you want outward flux, first compute the outward-facing normal vectors for each face.





Then integrate the dot product of <em>f</em> with each normal vector over the corresponding face.










c. You can get the total flux by summing all the fluxes found in part b; you end up with 42π - 56/3.
Alternatively, since <em>S</em> is closed, we can find the total flux by applying the divergence theorem.

where <em>R</em> is the interior of <em>S</em>. We have

The integral is easily computed in cylindrical coordinates:


as expected.