I don't really know the answer but maybe north pole and south pole?
To solve this problem we will derive the expression of the precession period from the moment of inertia of the given object. We will convert the units that are not in SI, and finally we will find the precession period with the variables found. Let's start defining the moment of inertia.

Here,
M = Mass
R = Radius of the hoop
The precession frequency is given as

Here,
M = Mass
g= Acceleration due to gravity
d = Distance of center of mass from pivot
I = Moment of inertia
= Angular velocity
Replacing the value for moment of inertia


The value for our angular velocity is not in SI, then


Replacing our values we have that


The precession frequency is




Therefore the precession period is 5.4s
<em>Answer:</em>
<em>Velocity is vector quantity.So it needs direction in addition to speed.</em>
<em>Explanation:</em>
<em>The velocity of an object is the rate of change of its position with respect to a frame of reference, and is a function of time. Velocity is equivalent to a specification of its speed and direction of motion. </em>
Answer:
12,750
Explanation:
P = mv
Momentum = Mass x Velocity
Plug it in and finish equation