Energy from the gravitational potential store in converted to kinetic energy. Air friction acts against the object, dissipating some energy as heat or sound. The object will continuously accelerate until the acceleration is equal to the air friction acting against it. This is when it reaches terminal velocity
The moon<span> is 1/4 the size of </span>Earth<span>, so the </span>moon's<span> gravity is much less than the </span>earth's gravity, 83.3% (or 5/6) less to be exact. Finally, "weight<span>" is a measure of the gravitational pull between two objects. So of course you would </span>weigh<span> much less on the </span>moon<span>.</span>
It would be 1. B 2. A 3. A
The normal force is always perpendicular to the surface. So it would be straight to the left of the wall