1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
skad [1K]
3 years ago
15

A student uses 150 N to push a block of wood up a ramp at constant velocity of 2.6m/s. What is his power output?

Physics
1 answer:
11Alexandr11 [23.1K]3 years ago
8 0

Answer:

P= 390 W

Explanation:

In physics, power is the rate of doing work or of transferring heat, i.e. the amount of energy transferred or converted per unit time.  Work  is a force F applied over a distance x. Matemathicaly it means

P = dW/dt ≈ d(F * x)/dt = xdF/dt + Fdx/dt. If force is constant dF/dt=0 so P=F dx/dt = P*v, where v is velocity, the rate of distance per unit time.

We have force and velocity. Newton is unit of Kg*m/s2, hence

P= 150 kgm/s2 * 2.6 m/s =390 Kgm2/s3 = 390 W, where W is Watts and is an unit of power

You might be interested in
Prepare a summary to explain how much the final birds varied from the original birds after 1 million years of natural selection.
mezya [45]

Answer:

your father️️️ just 5 points

5 0
2 years ago
Plssss help Do you guys have any other more interesting, funny or creative ideas of incline problems than something sliding down
VashaNatasha [74]
U can always just do the classic roller coaster going up an incline and create some sort of story from that.
8 0
3 years ago
How long does it take to travel a distance of 672km at a speed of 95km/h?
Brilliant_brown [7]

Answer:

7.07 hours

Explanation:

divide the distance by the speed

so in this case, divide 672 by 95

6 0
2 years ago
The strength of an electromagnet can be altered by
denpristay [2]
The strength of an electromagnet can be altered by increasing the number of coils around the core. The more times the coil is wrapped, the stronger the electromagnet is.

Your answer is: B) Increasing the number of coils around the core 

Have an amazing day and stay hopeful!

3 0
3 years ago
Read 2 more answers
What is the force per unit area at this point acting normal to the surface with unit nor- Side View √√ mal vector n = (1/ 2)ex +
Mumz [18]

Complete Question:

Given \sigma = \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right] at a point. What is the force per unit area at this point acting normal to the surface with\b n = (1/ \sqrt{2} ) \b e_x + (1/ \sqrt{2}) \b e_z   ? Are there any shear stresses acting on this surface?

Answer:

Force per unit area, \sigma_n = 28 MPa

There are shear stresses acting on the surface since \tau \neq 0

Explanation:

\sigma = \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right]

equation of the normal, \b n = (1/ \sqrt{2} ) \b e_x + (1/ \sqrt{2}) \b e_z

\b n = \left[\begin{array}{ccc}\frac{1}{\sqrt{2} }\\0\\\frac{1}{\sqrt{2} }\end{array}\right]

Traction vector on n, T_n = \sigma \b n

T_n =  \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right] \left[\begin{array}{ccc}\frac{1}{\sqrt{2} }\\0\\\frac{1}{\sqrt{2} }\end{array}\right]

T_n = \left[\begin{array}{ccc}\frac{23}{\sqrt{2} }\\0\\\frac{27}{\sqrt{33} }\end{array}\right]

T_n = \frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z

To get the Force per unit area acting normal to the surface, find the dot product of the traction vector and the normal.

\sigma_n = T_n . \b n

\sigma \b n = (\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z) . ((1/ \sqrt{2} ) \b e_x + 0 \b  e_y +(1/ \sqrt{2}) \b e_z)\\\\\sigma \b n = 28 MPa

If the shear stress, \tau, is calculated and it is not equal to zero, this means there are shear stresses.

\tau = T_n  - \sigma_n \b n

\tau =  [\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z] - 28( (1/ \sqrt{2} ) \b e_x + (1/ \sqrt{2}) \b e_z)\\\\\tau =  [\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z] - [ (28/ \sqrt{2} ) \b e_x + (28/ \sqrt{2}) \b e_z]\\\\\tau =  \frac{-5}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{5}{\sqrt{2} } \b e_z

\tau = \sqrt{(-5/\sqrt{2})^2  + (27/\sqrt{2})^2 + (5/\sqrt{2})^2} \\\\ \tau = 19.74 MPa

Since \tau \neq 0, there are shear stresses acting on the surface.

3 0
2 years ago
Other questions:
  • A bowling ball has a mass of 7.2 kg and a weight of 70.6 N. It moves down the bowling alley at 1 m/s and strikes a pin with a fo
    15·2 answers
  • How to find yield strength of a load vs deflection?
    7·1 answer
  • Explain in detail what happens to the Earths surface after an earthquake due to the force of tension
    8·1 answer
  • What do lines on a contour map indicate
    7·1 answer
  • Starting from rest, a rocket accelerates at 20 m/s². How far will it travel in the first 4
    10·1 answer
  • Write two functions of kotokis​
    8·1 answer
  • 6. Compare Which of the
    6·1 answer
  • How are seeds different from spores?
    15·1 answer
  • The resultant of two vectors is of magnitude 3 units and 4 units is 1 units, what is the value of their dot product? ​
    11·1 answer
  • The electron in a ground-state h atom absorbs a photon of wavelength 97. 25 nm. to what energy level does the electron move?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!