Answer:
Acceleration=4m/s²
Force applied =619.8N
Explanation:
Using equation of motion
V=u+at we have: u=o, v=50m/s
50= 0 + a×0.0121
a = 50/0.0121
a= 4m/s²
Neglecting resistance forces
F= ma, where a = v-u/t
F=m×(v-u)/t
F= 0.150 ×(50-0)/0.0121
F=7.5/0.0121
F= 619.8N
Answer:
a) 5.197rev/s
b) Kf/Ki =2.28
Explanation:
a) Angular momentum of the system L = Iw
ButLi=Lf
Kiwi =Ifwf
wf = (Ii/If)will = (4.65/3.4)×3.8=5.197rev/s
b)Kinetic energy KE= 0.5Iw^2
Ki = 0.5Iiwi^2
Kf=0.5Ifwf^2
Kf/Ki = Ifwf/Iiwi
Kf/Ki = (4.65/3.4))(5.197/3.8)
Kf/Ki = 1.22(1.368)^2
Kf/Ki = 2.28
If the objects comprise a gas, then the first object contains more
thermal energy (heat) than the second object.
If the objects are solid, then you can't draw any conclusion unless
both objects have the same total mass. If that's the case, then the
first object must be moving faster than the second one.
When the force on some area is doubled and the area doesn't change,
then the pressure on that area has doubled.
The correct answer for this question is this one: "The drops dripped from a bloody knife about 2 ft above the ground."
<span>On a floor directly underneath a second-floor balcony, there are several spherical drops of blood about 7 mm in diameter. The statement that best accounts for the drops is that <em>the </em></span><span><em>drops dripped from a bloody knife about 2 ft above the ground.</em>
</span>
Hope this helps answer your question and have a nice day ahead.