Answer: 8.24x10^5 years, or 8.24x10^3 centuries
Explanation: Sequential conversions to arrive at a total population rate of 2.31x10^10 atoms/sec for the entire population. Total seconds would be (6.02x10^23 atoms/2.31x10^10 atoms/sec) = 2.60x10^13 seconds. No breaks allowed, then (2.60x10^13 seconds)/(3.1536x10^7 sec/year)= 8.24x10^5 years.
it is an endothermic because water can not give off heat it can only take from others like if you were to boil water the water is endothermic and the heat is the exothermic
We are given that the balanced chemical reaction is:
cacl2⋅2h2o(aq) +
k2c2o4⋅h2o(aq) --->
cac2o4⋅h2o(s) +
2kcl(aq) + 2h2o(l)
We known that
the product was oven dried, therefore the mass of 0.333 g pertains only to that
of the substance cac2o4⋅h2o(s). So what we will do first is to convert this
into moles by dividing the mass with the molar mass. The molar mass of cac2o4⋅h2o(s) is
molar mass of cac2o4 plus the
molar mass of h2o.
molar mass cac2o4⋅h2o(s) = 128.10
+ 18 = 146.10 g /mole
moles cac2o4⋅h2o(s) =
0.333 / 146.10 = 2.28 x 10^-3 moles
Looking at
the balanced chemical reaction, the ratio of cac2o4⋅h2o(s) and k2c2o4⋅h2o(aq) is
1:1, therefore:
moles k2c2o4⋅h2o(aq) = 2.28
x 10^-3 moles
Converting
this to mass:
mass k2c2o4⋅h2o(aq) = 2.28
x 10^-3 moles (184.24 g /mol) = 0.419931006 g
Therefore:
The mass of k2c2o4⋅<span>h2o(aq) in
the salt mixture is about 0.420 g</span>
When ΔG° is the change in Gibbs free energy
So according to ΔG° formula:
ΔG° = - R*T*(㏑K)
here when K = [NH3]^2/[N2][H2]^3 = Kc
and Kc = 9
and when T is the temperature in Kelvin = 350 + 273 = 623 K
and R is the universal gas constant = 8.314 1/mol.K
So by substitution in ΔG° formula:
∴ ΔG° = - 8.314 1/ mol.K * 623 K *㏑(9)
= - 4536
Answer:
Tamoxifen is an irreversible, competitive inhibitor.
Explanation:
In order to binds to the active site of the estrogen receptor protein, tamoxifen have to compete with the other chemical compound, and inhibits the estrogen release, so it is a competitive inhibitor. Then, you said that when tamoxifen binds to the receptor, the protein is permanently deactivated, so it is also irreversible.