Answer:
The correct option is (A).
Explanation:
When the temperature of the hot solid object increases then the radiation which emits from it gets shifted to smaller wavelength or higher frequencies. The hot appears red color.
The total energy emitted of a hot solid object is directly proportional to the fourth power of the temperature of the black body.
For example, when we switch on the light bulb, initially the radiation of the bulb appears dimmer. Then, it will become brighter. Then, it will turn yellow and then it becomes even white.
The color of the light emitted by a hot solid object depends on the temperature of the object.
Therefore, the correct option is (A).
Answer: 27 joules
Explanation:
Work is done when force is applied on the bench over a distance. it is measured in joules.
Workdone = force x distance
= 45 N x 0.6 metres
= 27 joules
Thus, 27 joules of work is done on the bench.
Here, Carefully look at the graph.
When it is on x=10, it is approximately 10, (slightly less than 10)
Closest value would be 90, so y/x = 90/10 = 9
So, the density of the graph would be 9 g/cm³
In short, Your Answer would be Option D
Hope this helps!
Answer:
v = 20.31 m/s
Explanation:
p = mv -> v = p/m = 32,500 kg*m/s / 1,600 kg = 20.31 m/s
Answer:
95.9°
Explanation:
The diagram illustrating the action of the two forces on the object is given in the attached photo.
Using sine rule a/SineA = b/SineB, we can obtain the value of B° as shown in the attached photo as follow:
a/SineA = b/SineB,
83/Sine52 = 56/SineB
Cross multiply to express in linear form
83 x SineB = 56 x Sine52
Divide both side by 83
SineB = (56 x Sine52)/83
SineB = 0.5317
B = Sine^-1(0.5317)
B = 32.1°
Now, we can obtain the angle θ, between the two forces as shown in the attached photo as follow:
52° + B° + θ = 180° ( sum of angles in a triangle)
52° + 32.1° + θ = 180°
Collect like terms
θ = 180° - 52° - 32.1°
θ = 95.9°
Therefore, the angle between the two forces is 95.9°