Answer:
8.13secs
Explanation:
From the question weal are given
Height H =324m
Required
time it takes to drop t
Using the equation of motion
H = ut + 1/2gt²
Substitute the given values
324 = 0(t)+1/2(9.8)t²
324 = 1/2(9.8)t²
324 = 4.9t²
t² =324/4.9
t² = 66.12
t = √66.12
t = 8.13secs
Hence the time taken to drop is 8.13secs
Answer:
a) the magnitude of the force is
F= Q(
) and where k = 1/4πε₀
F = Qqs/4πε₀r³
b) the magnitude of the torque on the dipole
τ = Qqs/4πε₀r²
Explanation:
from coulomb's law
E = 
where k = 1/4πε₀
the expression of the electric field due to dipole at a distance r is
E(r) =
, where p = q × s
E(r) =
where r>>s
a) find the magnitude of force due to the dipole
F=QE
F= Q(
)
where k = 1/4πε₀
F = Qqs/4πε₀r³
b) b) magnitude of the torque(τ) on the dipole is dependent on the perpendicular forces
τ = F sinθ × s
θ = 90°
note: sin90° = 1
τ = F × r
recall F = Qqs/4πε₀r³
∴ τ = (Qqs/4πε₀r³) × r
τ = Qqs/4πε₀r²
1.) appearance
2.)texture
3.)color
4.)melting point
5.)odor
<span>3) Neither precise or accurate.
This is because of the deviation between the measurements, they vary and are not within a good range. And they are not close to the accepted value. In order to be precise the measurements have to be relatively close to each other, and to be accurate they have to be close to the accepted value.</span>