** Missing information: The vertical distance from surface of liquid to bottom of the object is sought in this question, with the condition that the object is at equilibrium **
Ans: The vertical distance = y = M/(ρA)
Explanation:Support the vertical distance = y
Object's density = M/(A*h) (since A*h = volume)
By applying the condition,
(M/(Ah))/ρ = y/h
M/(ρAh) = y/h
y = M/(ρA)
Answer:
wire 66.0 cm long carries a 0.750 A current in the positive direction of an x axis through a magnetic field $$\vec { B } = ( 3.00 m T ) \hat { j } ...
Top answer · 1 vote
Answer:
Explanation:
Centripetal acceleration (a) is defined as the square of an object's velocity (V^2) divided by the distance of the object from it's point/axis of revolution (r). So:
which allows us to solve for the velocity:
Answer:
<em>1108.464 N of force</em>
Explanation:
diameter of water hose = 70 cm = 0.7 m
radius = 0.7/2 = 0.35 m
volumetric flow rate Q = 420 L/min
1 L = 0.001 m^3
1 min = 60 s
therefore,
Q = 420 L/min = (420 x 0.001)/60 = 0.007 m^3/s
Area A of fire hose = π = 3.142 x = 0.38 m^2
<em>From continuity equation, Q = AV</em>
where V1 is the velocity of the water through the pipe, and A1 is the area of the pipe.
Q = A1V1
0.007 = 0.38V1
V1 = 0.007/0.38 = 0.018 m/s.
Nozzle diameter = 0.75 cm = 0.0075 m
radius = 0.00375
Area = π = 3.142 x = 4.42 x m^2
velocity of water through the nozzle will be
V2 = Q/A2 = 0.007 ÷ (4.42 x ) = 158.37 m/s
From
<em>F = ρQ(v2 - v1)</em>
Where,
F = force exerted
p = density of water = 1000 kg/m^3
F = 1000 x 0.007 x (158.37 - 0.018) = <em>1108.464 N of force</em>
Answer:
The correct answer is A.
Objects in free fall accelerate due to <u>gravity</u>.
Explanation:
Momentum can help an object to keep its state of motion at a constant velocity when no external force is applied. It can never accelerate the object.
According to the laws of motion, we know that acceleration is produced in a body only when a Force is applied in the direction of motion of body.
During a free fall, only the force of gravity is acting on an object and that too in the direction of its motion. Hence, the acceleration produced in a free falling object is due to gravity.