Answer:
The rows running from left to right are called Periods and the columns going up and down are called Groups.
Explanation:
I believe the correct answer from the choices listed above is the first option. During a physical change, m<span>olecules can move more rapidly and freely and change states. Such action, would not disrupt or destroy the nature of the molecules they will still have the same molecular structure. Hope this answers the question.</span>
In order to balance this equation you need to count each element and how many of the individual elements are in the equation. _H2+N2=2 NH3 You multiply the 2 (Which is the coefficient) by the 3 (which is the subscript) This would equal 6 which indicated there are 6 hydrogen atoms on the right side so the left side should also have 6 hydrogen atoms
The missing coefficient on the left side must multiple the 2 to become 6 hydrogen Answer=3
Answer:
27.98g/mol
Explanation:
Using ideal gas law equation;
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
T = temperature (K)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
According to the information given:
V = 2.5L
P = 1.4 atm
T = 282K
n = ?
Using PV = nRT
n = PV/RT
n = 1.4 × 2.5/0.0821 × 282
n = 3.5/23.1522
n = 0.151mol
Using the formula to calculate molar mass of the elemental gas:
mole = mass/molar mass
Molar mass = mass/mole
Molar mass = 4.23g ÷ 0.151mol
Molar mass = 27.98g/mol
Answer:
The correct answer is option B.
Explanation:
Endothermic reactions are defined as the reactions in which energy of products is more than the energy of the reactants. In these reactions, energy is absorbed by the system.
The total enthalpy of the reaction
comes out to be positive.
Exothermic reactions are defined as the reactions in which energy of reactants is more than the energy of the products. In these reactions, energy is released by the system.
The total enthalpy of the reaction
comes out to be negative.
On mixing of both solution we had observed that temperature of the resulting solution was lowered this is because the energy was absorbed during the chemical reaction.