Answer:

Explanation:
given,
length of ladder = 10 ft
let x be the distance of the bottom and y be the distance of the top of ladder.
x² + y² = 100
differentiating with respect to time we get
..............(1)
when x = 8 and y = 6 and when \dfrac{dx}{dt} = 1.4ft/s
from equation (1)
now,


let the angle between the ladders be θ

y = xtan θ




Maybe this would help understand it better.
<span>Tectonic plates can transport both continental crust and oceanic crust, or they may be made of only one kind of crust. Oceanic crust is denser than continental crust. At a subduction zone, the oceanic crust usually sinks into the mantle beneath lighter continental crust</span>
Answer:
15.3 s and 332 m
Explanation:
With the launch of projectiles expressions we can solve this problem, with the acceleration of the moon
gm = 1/6 ge
gm = 1/6 9.8 m/s² = 1.63 m/s²
We calculate the range
R = Vo² sin 2θ / g
R = 25² sin (2 30) / 1.63
R= 332 m
We will calculate the time of flight,
Y = Voy t – ½ g t2
Voy = Vo sin θ
When the ball reaches the end point has the same initial height Y=0
0 = Vo sin t – ½ g t2
0 = 25 sin (30) t – ½ 1.63 t2
0= 12.5 t – 0.815 t2
We solve the equation
0= t ( 12.5 -0.815 t)
t=0 s
t= 15.3 s
The value of zero corresponds to the departure point and the flight time is 15.3 s
Let's calculate the reach on earth
R2 = 25² sin (2 30) / 9.8
R2 = 55.2 m
R/R2 = 332/55.2
R/R2 = 6
Therefore the ball travels a distance six times greater on the moon than on Earth
X Represents the distance the spring is stretched or compressed away from its equilibrium or rest position.