Answer:
V_inside = 36 V
Explanation:
<u>Given </u>
We are given a sphere with a positive charge q with radius R = 0.400 m Also, the potential due to this charge at distance r = 1.20 m is V = 24.0 V.
<u>Required</u>
We are asked to calculate the potential at the centre of the sphere
<u>Solution</u>
The potential energy due to the sphere is given by equation
V = (1/4*π*∈o) × (q/r) (1)
Where r is the distance where the potential is measured, it may be inside the sphere or outside the sphere. As shown by equation (1) the potential inversely proportional to the distance V
V ∝ 1/r
The potential at the centre of the sphere depends on the radius R where the potential is the same for the entire sphere. As the charge q is the same and the term (1/4*π*∈o) is constant we could express a relation between the states , e inside the sphere and outside the sphere as next
V_1/V_2=r_2/r_1
V_inside/V_outside = r/R
V_inside = (r/R)*V_outside (2)
Now we can plug our values for r, R and V_outside into equation (2) to get V_inside
V_inside = (1.2 m )/(0.600)*18
= 36 V
V_inside = 36 V
Answer:
Speed of the wreckage = 49.29 km/hr
Explanation:
This question is solved simply by using the conservation of momentum law.
The momentum of the three moving bodies are calculated below:
Momentum of Car 1 : 1100 * 55 = 60500 kg.km/hr
Momentum of Truck : 480 * 37 = 17760 kg.km/hr
Momentum of Car 2 : 1300 * 49 = 63700 kg.km/hr
Total mass of all three vehicles: 1100 + 480 + 1300 = 2880 kg
The final momentum equals the initial momentum if it is conserved. Thus we have the following equation:
Final Momentum = Initial Momentum
Final Velocity * Total mass = Momentum of all three vehicles combined
Final Velocity * 2880 = 60500 + 17760 + 63700
Final Velocity = 49.29 km/hr
The answer is so we have more oxygen and because loggers are cutting down more trees every day and the more they cut the less air we have
Answer:
because there is many places for it to bounce of of creating another soundwave