Answer:
the answer is A
Explanation:
According to the law of conservation of energy or the first law thermodynamics energy neither be created nor destroyed, energy is transferred from one form to another form.
Answer:
- <em>The coefficients in a chemical equation represent the </em><u>relative number of moles of each reactant and product that interven in the chemical reaction.</u>
Explanation:
The <em>coefficients</em> are the numbers that you put in front of each chemical formula that represents the reactants and products in the <em>chemical equation</em>. They indicate the mole ratio in which the elements or compounds react to form the products, as per the chemical equation.
See an example:
- Word equation: hydrogen and oxygen produce water
- Chemical (skeleton) equation: H₂ (g) + O₂(g) → H₂O (g)
This equation is not balanced: the number of atoms of oxygenin the reactant side is 2 while the number of atoms of oxygen isn the product side is 1. In order to balance the equation you need to add some coefficients.
When no coefficients are shown it is understood that the coefficient is 1.
- Balanced chemical equation: 2H₂ (g) + O₂(g) → 2H₂O (g)
The coefficients 2 in front of H₂ and 1 (understood) in front of O₂, in the reactant side, and 2 in front of H₂O, in the product side, balance the equation.
Those coefficients mean that the 2 molecules (or mole of molecules) of H₂ react with 1 molecule (or mole of molecules) of O₂ to form 2 molecules (or moles) of H₂O (product side).
That is the mole ratio: 2 H₂ : 1 O₂ : 2 H₂O.
Notice that, in spite of the aboslute numbers may change, the mole ratio is unique for any chemical reaction. For example 4 : 2 : 4 is the same ratio that 2 : 1 : 2, or 8 : 4 : 8, but the most common practice is to use the most simple form of the ratio, i.e. 2: 1: 2.
Goto ----> prize.gg to claim your robux PRIZE!!!!
Answer:
1.56 mol H₂
Explanation:
Mg₃(Si₂O₅)₂(OH)₂
<em>There are 4 Si moles per Mg₃(Si₂O₅)₂(OH)₂ mol</em>. With that in mind we can <u>calculate how many Mg₃(Si₂O₅)₂(OH)₂ moles are there in the sample</u>, using the <em>given number of silicon moles</em>:
- 3.120 mol Si *
= 0.78 mol Mg₃(Si₂O₅)₂(OH)₂
Then we can <u>convert Mg₃(Si₂O₅)₂(OH)₂ moles into hydrogen moles</u>, keeping in mind that <em>there are 2 hydrogen moles per Mg₃(Si₂O₅)₂(OH)₂ mol</em>:
- 0.78 mol Mg₃(Si₂O₅)₂(OH)₂ * 2 = 1.56 mol H₂
Answer:
34.02 g.
Explanation:
Hello!
In this case, since the gas behaves ideally, we can use the following equation to compute the moles at the specified conditions:

Now, since the molar mass of a compound is computed by dividing the mass over mass, we obtain the following molar mass:

So probably, the gas may be H₂S.
Best regards!