Heat required to raise the temperature = 159.505 J
<h3>Further explanation</h3>
Given
c = specific heat of Beryllium = 1.825 J/g C
m = mass = 2.3 g
Δt = Temperature difference : 60 - 22 = 38 °C
Required
Heat required
Solution
Heat can be formulated
Q = m.c.Δt
Input the value :
Q = 2.3 x 1.825 x 38
Q = 159.505 J
<h3><u>Answer;</u></h3>
All the above
-street lights
-businesses
- Homes, etc
<h3><u>Explanation; </u></h3>
- Nuclear energy comes from splitting atoms in a reactor to heat water into steam, turn a turbine and generate electricity.
- Nuclear reactions are used to release nuclear energy that generate heat, which most frequently is then used in steam turbines to produce electricity in a nuclear power plant.
- Because nuclear power plants do not burn fuel, they do not produce greenhouse gas emissions.
- Nuclear energy may be used in a wide variety of fields as it generates high levels of electricity without causing damage to our environment and atmosphere.
Answer:
The biggest known human gene, is made up of about 2.4 million bases. The Human Genome Project also gave us more detailed information about chromosomes. It turns out that chromosome 1 contains the most genes, while the Y chromosome has the fewest.
Explanation:
Answer: the amount of force on the spring scale
Explanation:
Do all substances dissolve in water? Kids explore the varying levels of solubility of common household substances in this fun-filled experiment!
Materials Needed:
4 clear, glass jars filled with plain tap water
Flour
Salt
Talcum or baby powder
Granulated sugar
Stirrer
Step 1: Help your child form a big question before starting the experiment.
Step 2: Make a hypothesis for each substance. Perhaps the salt will dissolve because your child has watched you dissolve salt or sugar in water when cooking. Maybe the baby powder will not dissolve because of its powdery texture. Help your child write down his or her predictions.
Step 3: Scoop a teaspoon of each substance in the jars, only adding one substance per jar. Stir it up!
Step 4: Observe whether or not each substance dissolves and record the findings!
Your child will likely note that that sugar and salt dissolve, while the flour will partially dissolve, and the baby powder will remain intact. The grainy crystals of the sugar and salt are easily dissolved in water, but the dry, powdery substances are likely to clump up or remain at the bottom of the jar.
As you can see, the scientific method is easy to work into your child’s scientific experiments. Not only does it increase your child’s scientific learning and critical thinking skills, but it sparks curiosity and motivates kids as they learn to ask questions and prove their ideas! Get started today with the above ideas, and bring the scientific method home to your child during your next exciting science experiment