32g of oxygen is required to burn 4g of hydrogen.
Define molecular mass.
A specific molecule's mass is expressed in daltons and is known as the molecular mass (m) (Da or u). Due to the varying isotopes of an element that they contain, multiple molecules of the same substance can have distinct molecular weights.
The total atomic mass of every atom in a molecule, calculated using a scale with hydrogen, carbon, nitrogen, and oxygen having atomic masses of 1, 12, 14, and 16, respectively. For instance, water has a molecular mass of 18 (2 + 16), which consists of two hydrogen atoms and one oxygen atom. known also as molecular weight.
In ,2H2+O2-----> 2H2O
H 2 molecules have a mass of 2 g/mol.
The molecular weight of oxygen is 32 g/mol.
When the chemical equation is balanced,
To totally react, 32 g of oxygen are needed for every 22=4 g of hydrogen.
To know more about molecular mass use link below:
brainly.com/question/21334167
#SPJ1
Answer:
0.0432 M H2SO4
Explanation:
First, we want to find the moles of MNaOH used. We know that Molarity x Liters = moles. 0.160M x 0.0210L = 0.00336 moles MNaOH
to find the moles of H2SO4, we can use a mol ratio.
0.00336mol MNaOH x (1Mol H2SO4 /2mol MNaOH)
= 0. 00168 mol H2SO4
I found the mol ratio by looking at the coefficients in front of the molecules I knew(MNaOH) and the molecule I needed to find(H2SO4)
then, to find Molarity, we do mol/Liters
0.00168 mol/ 0.0388L =. 0.0432 M H2SO4
You can convert mL to L by dividing by 1000
the significant figures of this problem is 3, so my final answer will also have 3 sig figs.
We know that:
mass = density x volume
The volume of the total mixture is 0.1 m³
Let the first liquid be A and the second be B
Mass Total = Mass A + Mass B
800 x 0.1 = 1500Va + 500(0.1 - Va)
30 = 1000Va
Va = 0.03 m³
Vb = 0.1 - 0.03 = 0.07 m³
Answer:
A product in science is a substance that is formed when two or more chemicals react.
Explanation:
When a chemical reaction takes place, a new substance is often created from the atoms or molecules of the original substances. There are often multiple products formed in a reaction.
Answer:
D
Explanation:
Hello!
Since the rate must have the following units: mol/(L*s), the suitable units for k, considering that the term [D] [X] leads to mol^2/(L^2) (it means a second order kinetic law), are L/(mol*s), nevertheless, that answer isn't in the given options.